【題目】如圖,已知正方體紙盒的表面積為12cm2;
(1)求正方體的棱長;
(2)剪去蓋子后,插入一根長為5cm的細(xì)木棒,則細(xì)木棒露在外面的最短長度是多少?
(3)一只螞蟻在紙盒的表面由A爬到B,求螞蟻行走的最短路線.
【答案】(1)cm;(2);(3).
【解析】
(1)根據(jù)表面積,由算術(shù)平方根的求法可得正方體的棱長;
(2)長方體內(nèi)體對角線是最長的,當(dāng)木條在盒子里對角放置的時候露在外面的長度最小,根據(jù)勾股定理求出長方體紙箱的對角線長度,再用細(xì)木棒的長度減去長方體紙箱的對角線長度即可;
(3)由正方體的側(cè)面展開,然后求出其對角線的長度,即可求得最短路程.
解:(1)正方體有六個表面,表面積為.
每個表面的面積為;
設(shè)棱長為為xcm(),即,
∴,
即棱長為;
(2)如圖1所示:
由題意知:插入細(xì)木棒后,看不見的部分恰好是正方體的對角線,
∵
;
又∵,
,
則細(xì)木棒露在外面的最短長度為.
(3)如圖2所示:
在Rt△AGB中,AG=GD=DB=,AB=,
螞蟻爬行的路徑,
螞蟻爬行的最短距離是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點M,P,CD交BE于點Q,連接PQ,BM,下面結(jié)論:
①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④MB平分∠AMC,
其中結(jié)論正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB邊的垂直平分線l1交BC于點D,AC邊的垂直平分線l2交BC于點E,l1與l2相交于點O,連接AD,AE,△ADE的周長為12cm.
(1)求BC的長;
(2)分別連接OA,OB,OC,若△OBC的周長為26cm,求OA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位籃球運動員在距離籃圈中心水平距離4m處起跳投籃,球沿一條拋物線運動,當(dāng)球運動的水平距離為2.5m時,達(dá)到最大高度3.5m,然后準(zhǔn)確落入籃框內(nèi).已知籃圈中心距離地面高度為3.05m,在如圖所示的平面直角坐標(biāo)系中,下列說法正確的是( )
A. 此拋物線的解析式是y=﹣x2+3.5
B. 籃圈中心的坐標(biāo)是(4,3.05)
C. 此拋物線的頂點坐標(biāo)是(3.5,0)
D. 籃球出手時離地面的高度是2m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題:
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用-1來表示的小數(shù)部分,你同意小明的表示方法嗎?
事實上,小明的表示方法是有道理,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
又例如:∵,即,
∴的整數(shù)部分為2,小數(shù)部分為(-2).
請解答:(1) 的整數(shù)部分是 ,小數(shù)部分是 .
(2)如果的小數(shù)部分為a, 的整數(shù)部分為b,求a+b-的值;
(3)已知: 10+=x+y,其中x是整數(shù),且0<y<1,求x-y的相反數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是某公共汽車線路收支差額y(票價總收入減去運營成本)與乘客量x的函數(shù)圖象,目前這條線路虧損,為了扭虧,有關(guān)部門舉行提高票價的聽證會,乘客代表認(rèn)為:公交公司應(yīng)降低運營成本,實現(xiàn)扭虧,公交公司認(rèn)為:運營成本難以下降,提高票價才能扭虧根據(jù)這兩種意見,把圖①分別改畫成圖②和圖③.則下列判斷不合理的是( 。
A. 圖①中點A的實際意義是公交公司運營后虧損1萬元
B. 圖①中點B的實際意義是乘客量為1.5萬時公交公司收支平衡
C. 圖②能反映公交公司意見
D. 圖③能反映乘客意見
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD是菱形,邊BC在x軸上,點A(0,4),點B(3,0),雙曲線y=與直線BD交于點D、點E.
(1)求k的值;
(2)求直線BD的解析式;
(3)求△CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程ax+b=0(a≠0)的解為x=-2,點(1,3)是拋物線y=ax2+bx+c(a≠0)上的一個點,則下列四個點中一定在該拋物線上的是( )
A. (2,3) B. (0,3)
C. (-1,3) D. (-3,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】.在△AOB中∠AOB=,OA=OB=10,分別以OA、OB所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系(如圖所示).點P自點A出發(fā)沿線段AB勻速運動到點B停止,同時點D自原點O出發(fā)沿x軸正方向勻速運動,在點P、D運動的過程中,始終滿足PO=PD,過點O、D向AB作垂線,垂足分別為點C、E,設(shè)OD的長為x.
(1)求AP的長(用含x的代數(shù)式表示)
(2)在點P、D的運動過程中,線段PC與DE是否相等?若相等,請給予證明;若不相等,請說明理由;
(3)設(shè)以點P、O、D、E為頂點的四邊形的面積為y,請直接寫出y與x的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com