【題目】如圖,矩形OABC在平面直角坐標(biāo)系中,點(diǎn)A在y軸上,點(diǎn)C在軸上,OC=4,直線經(jīng)過(guò)點(diǎn)A,交軸于點(diǎn)D,點(diǎn)E在線段BC上,ED⊥AD.
(1)求點(diǎn)E的坐標(biāo);
(2)聯(lián)結(jié)BD,求cot∠BDE的值;
(3)點(diǎn)G在直線BC,且∠EDG=45°,求點(diǎn)G的坐標(biāo).
【答案】(1)(4,1);(2)2;(3)(4,)或(4,6).
【解析】
(1)先求出OA、OD、DC的長(zhǎng)度,再證明△AOD≌△DCE,從而得出EC=OD,即可求出E點(diǎn)坐標(biāo);(2)作EQ⊥BD,根據(jù)等腰三角形的性質(zhì)可求DQ和EQ的長(zhǎng)度,即可求出cot∠BDE;(3)分G在C點(diǎn)下方和B點(diǎn)上方兩種情況討論,借助三角形的相似即可求出相應(yīng)線段的長(zhǎng),從而求出點(diǎn)的坐標(biāo).
(1)∵經(jīng)過(guò)點(diǎn)A,點(diǎn)A在y軸上,
∴A(0,3),即OA=3
當(dāng)y=0時(shí),,解得x=1
∴D(1,0),即OD=1
∵矩形OABC中OC=4,
∴OB=OA=3,DC=OC-OD=3
∠AOC=∠BCD=90°.
∴∠OAD+∠ADO=90°
∵ED⊥AD
∴∠EDC+∠ADO=90°
∴∠EDC=∠OAD
又∵OA=CD=3
∴△AOD≌△DCE(ASA)
∴CE=OD=1
∴E(4,1).
(2)過(guò)點(diǎn)E作EQ⊥BD,與BD相交于Q.
∵DC=BC=3,∠BCD=90°,
∴△BCD為等腰直角三角形,
∴BD=,∠DBC=45°
∵EQ⊥BD
∴△EBQ為等腰直角三角形
∵CE=1
∴BE=BC-CE=2
∴BQ=QE=
∴QD=
∴
(3)如圖①當(dāng)G點(diǎn)在C點(diǎn)上方時(shí)
∵∠EDG=45°=∠EDC+∠GDC
∠BDC=45°= ∠BDE +∠EDC
∴∠GDC=∠BDE
∴Rt△GCD∽Rt△EQD
∴
即
解得GC=
故G(4,);
②當(dāng)G‘點(diǎn)在B點(diǎn)上方時(shí)
∵∠DG‘C+∠G‘DB=∠DBC=45°
∠G‘DB+∠BDE=∠EDG‘=45°
∴∠DG‘C=∠BDE
∵∠DBC=∠EDG‘ =45°
∴△DEG‘∽△BED
∴
∵,BE=2,
∴EG‘=5
∴CG‘=6即G‘(4,6)
故G點(diǎn)坐標(biāo)為(4,)或(4,6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與直線交于A,B兩點(diǎn),交x軸與D,C兩點(diǎn),連接AC,已知A(0,3),C(3,0).(1)拋物線的解析式__;(2)設(shè)E為線段AC上一點(diǎn)(不含端點(diǎn)),連接DE,一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),沿線段DE以每秒一個(gè)單位速度運(yùn)動(dòng)到E點(diǎn),再沿線段EA以每秒個(gè)單位的速度運(yùn)動(dòng)到A后停止.若使點(diǎn)M在整個(gè)運(yùn)動(dòng)中用時(shí)最少,則點(diǎn)E的坐標(biāo)__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段、、滿足a︰b︰c=3︰2︰6,且.
(1)求、、的值;
(2)若線段是線段、的比例中項(xiàng),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于三個(gè)數(shù)、、,用表示這三個(gè)數(shù)的中位數(shù),用表示這三個(gè)數(shù)中最大數(shù),例如:,,.
解決問(wèn)題:
(1)填空:如果,則的取值范圍為 ;
(2)如果,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)踐操作
如圖,是直角三角形,,利用直尺和圓規(guī)按下列要求作圖,并在圖中表明相應(yīng)的字母.(保留作圖痕跡,不寫(xiě)作法)
(1)①作的平分線,交于點(diǎn);②以為圓心,為半徑作圓.
綜合運(yùn)用
在你所作的圖中,
(2)與⊙的位置關(guān)系是 ;(直接寫(xiě)出答案)
(3)若,,求⊙的半徑.
(4)在(3)的條件下,求以為軸把△ABC旋轉(zhuǎn)一周得到的圓錐的側(cè)面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角梯形中,,,分別以邊所在直線為軸,軸建立平面直角坐標(biāo)系.
(1)求點(diǎn)的坐標(biāo);
(2)已知分別為線段上的點(diǎn),,直線交軸于點(diǎn),過(guò)點(diǎn)E作EG⊥x軸于G,且EG:OG=2.求直線的解析式;
(3)點(diǎn)是(2)中直線上的一個(gè)動(dòng)點(diǎn),在軸上方的平面內(nèi)是否存在一點(diǎn),使以為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,AD、CE是高,連接DE.
(1)求證:BC=2DE;
(2)若∠BAC=50°,求∠ADE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8cm,BC=16cm,點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)A停止,同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止,點(diǎn)P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為ts.
(1)當(dāng)t為何值時(shí),四邊形ABQP是矩形;
(2)當(dāng)t為何值時(shí),四邊形AQCP是菱形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com