【題目】已知:如圖,一艘漁船正在港口A的正東方向40海里的B處進行捕魚作業(yè),突然接到通知,要該船前往C島運送一批物資到A港,已知C島在A港的北偏東60°方向,且在B的北偏西45°方向.問該船從B處出發(fā),以平均每小時20海里的速度行駛,需要多少時間才能把這批物資送到A(精確到1小時)(該船在C島停留半個小時)?,

【答案】3小時.

【解析】

CD⊥ABD點.設(shè)CD=x海里,在直角△ACD中,利用x表示出AC,AD,同理表示出BD,BC,根據(jù)AB=40即可列出方程求得CD的長,則AC+CB即可求得,然后除以速度即可得到時間.

CD⊥ABD點.設(shè)CD=x海里,

在直角△ACD中,∠CAD=90°-60°=30°,

AC=2x,AD=x

在直角△BCD中,∠CBD=45°,

BD=CD=x,BC=CD=x,

∵AB=40,即AD+BD=40,

x+x=40

解得:x=20-1),

∴BC=20-1=20-20,AC=2x=40-1),

則總路程是:20-20+40-1)海里,

則時間是:(小時).

該船在C島停留半個小時,

需要3小時能把這批物資送到A港.

考點: 解直角三角形的應(yīng)用-方向角問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點A、B、C、D、M、N均在同一平面內(nèi),CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結(jié)果精確到0.1米).(參考數(shù)據(jù):=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結(jié)論:ab<0,b24a0<a+b+c<2,0<b<1,當(dāng)x>﹣1時,y>0,其中正確結(jié)論的個數(shù)是

A.5個 B.4個 C.3個 D.2個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果三角形的兩個內(nèi)角滿足,那么稱這樣的三角形為“類直角三角形”.

嘗試運用

1)如圖1,在中,,,的平分線.

①證明是“類直角三角形”;

②試問在邊上是否存在點(異于點),使得也是“類直角三角形”?若存在,請求出的長;若不存在,請說明理由.

類比拓展

2)如圖2,內(nèi)接于,直徑,弦,點是弧上一動點(包括端點),延長至點,連結(jié),且,當(dāng)是“類直角三角形”時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,□ABCD的對角線AC,BD相交于點OE、FG、H分別是OA、OB、OCOD的中點,那么□ABCD與四邊形EFGH是否是位似圖形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交ADE,交BA的延長線于點F.

1)求證:.

2)如果,求線段PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是直徑,點D是⊙O上一點,點C是的中點,CE⊥AB于點E,過點D的切線交EC的延長線于點G,連接AD,分別交CE,CB于點P,Q,連接AC,關(guān)于下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心,其中結(jié)論正確的是________(只需填寫序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)興趣小組研究某型號冷柜溫度的變化情況,發(fā)現(xiàn)該冷柜的工作過程是:當(dāng)溫度達到設(shè)定溫度時,制冷停止,此后冷柜中的溫度開始逐漸上升,當(dāng)上升到時,制冷開始,溫度開始逐漸下降,當(dāng)冷柜自動制冷至時,制冷再次停止,……,按照以上方式循環(huán)進行.

同學(xué)們記錄了44內(nèi)15個時間點冷柜中的溫度隨時間的變化情況,制成下表:

(1)通過分析發(fā)現(xiàn),冷柜中的溫度是時間的函數(shù).

當(dāng)時,寫出一個符合表中數(shù)據(jù)的函數(shù)解析式 ;

當(dāng)時,寫出一個符合表中數(shù)據(jù)的函數(shù)解析式 ;

(2)的值為 ;

(3)如圖,在直角坐標(biāo)系中,已描出了上表中部分數(shù)據(jù)對應(yīng)的點,請描出剩余對應(yīng)的點,并畫出時溫度隨時間變化的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個直角三角形紙片放置在平面直角坐標(biāo)系中,已知點,點,點.是邊上的一動點(點不與點、重合),沿著折疊該紙片,得點的對應(yīng)點.

1)如圖1,當(dāng)點在第一象限,且滿足時,求點的坐標(biāo);

2)如圖2,當(dāng)中點時,求的長;

3)當(dāng)時,直接寫出點的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案