【題目】如圖,直線y=kx+b(k≠0)與拋物線y=ax2(a≠0)交于A,B兩點,且點A的橫坐標是-2,點B的橫坐標是3,則以下結論:
①拋物線y=ax2(a≠0)的圖象的頂點一定是原點;
②x>0時,直線y=kx+b(k≠0)與拋物線y=ax2(a≠0)的函數值都隨著x的增大而增大;
③AB的長度可以等于5;
④△OAB有可能成為等邊三角形;
⑤當-3<x<2時,ax2+kx<b,
其中正確的結論是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
【答案】B
【解析】試題分析:①由頂點坐標公式判斷即可;
②根據圖象得到一次函數y=kx+b為增函數,拋物線當x大于0時為增函數,本選項正確;
③AB長不可能為5,由A、B的橫坐標求出AB為5時,直線AB與x軸平行,即k=0,與已知矛盾;
④三角形OAB不可能為等邊三角形,因為OA與OB不可能相等;
⑤直線y=-kx+b與y=kx+b關于y軸對稱,作出對稱后的圖象,故y=-kx+b與拋物線交點橫坐標分別為-3與2,找出一次函數圖象在拋物線上方時x的范圍判斷即可.
試題解析:①拋物線y=ax2,利用頂點坐標公式得:頂點坐標為(0,0),本選項正確;
②根據圖象得:直線y=kx+b(k≠0)為增函數;拋物線y=ax2(a≠0)當x>0時為增函數,則x>0時,直線與拋物線函數值都隨著x的增大而增大,本選項正確;
③由A、B橫坐標分別為-2,3,若AB=5,可得出直線AB與x軸平行,即k=0,與已知k≠0矛盾,故AB不可能為5,本選項錯誤;
④若OA=OB,得到直線AB與x軸平行,即k=0,與已知k≠0矛盾,∴OA≠OB,即△AOB不可能為等邊三角形,本選項錯誤;
⑤直線y=-kx+b與y=kx+b關于y軸對稱,如圖所示:
可得出直線y=-kx+b與拋物線交點C、D橫坐標分別為-3,2,由圖象可得:當-3<x<2時,ax2<-kx+b,即ax2+kx<b,
則正確的結論有①②⑤.
故選B.
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點E,F分別在BC,AB上,點M在BA的延長線上,且CE=BF=AM,過點M,E分別作NM⊥DM,NE⊥DE交于N,連接NF.
(1)求證:DE⊥DM;
(2)猜想并寫出四邊形CENF是怎樣的特殊四邊形,并證明你的猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A,B,C是數軸上三點,O為原點,點C對應的數為3,BC=2,AB=6.
(1)求點A,B對應的數;
(2)動點M,N分別同時從AC出發(fā),分別以每秒3個單位和1個單位的速度沿數軸正方向運動.P為AM的中點,Q在CN上,且CQ=CN,設運動時間為t(t > 0).
①求點P,Q對應的數(用含t的式子表示);
②t為何值時OP=BQ.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】青山村種的水稻2010年平均每公頃產7200kg,2012年水稻平均每公頃產的產量是8400kg,設水稻每公頃產量的年平均增長率為x,可列方程為( 。
A.7200(1+x)2=8400B.7200(1+x2)=8400
C.7200(x2+x)=8400D.7200(1+x)=8400
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com