【題目】如圖,四邊形ABCD,已知∠A=90°,AB=3,BC=12,CD=13,DA=4.求四邊形的面積.
【答案】解:連接BD, ∵AB=3,BC=12,CD=13,DA=4,∠A=90°,
∵BD= =5,
∴BD2+BC2=CD2 ,
∴△BCD均為直角三角形,
∴S四邊形ABCD的面積=S△ABD+S△BCD= ABAD+ BCBD= ×3×4+ ×12×5=36.
【解析】連接BD可得△ABD與△BCD均為直角三角形,進(jìn)而可求解四邊形的面積.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對勾股定理的逆定理的理解,了解如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)小立方體的六個(gè)面分別標(biāo)有字母A,B,C,D,E,F從三個(gè)不同方向看到的情形如圖所示.
(1) A對面的字母是 ,B對面的字母是 ,E對面的字母是 .(請直接填寫答案)
(2) 若A=2x-1,B=-3x+9.C=-7.D=1,E=4x+5,F=9,且字母A與它對面的字母表示的數(shù)互為相反數(shù),求B,E的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】昆明是我們云南省的省會(huì),享有“春城”之美譽(yù).常住人口約有668萬人,請將668萬用科學(xué)記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與拋物線y=ax2(a≠0)交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)是-2,點(diǎn)B的橫坐標(biāo)是3,則以下結(jié)論:
①拋物線y=ax2(a≠0)的圖象的頂點(diǎn)一定是原點(diǎn);
②x>0時(shí),直線y=kx+b(k≠0)與拋物線y=ax2(a≠0)的函數(shù)值都隨著x的增大而增大;
③AB的長度可以等于5;
④△OAB有可能成為等邊三角形;
⑤當(dāng)-3<x<2時(shí),ax2+kx<b,
其中正確的結(jié)論是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,已知AD∥BC,AB⊥BC,點(diǎn)E,F(xiàn)在邊AB上,且∠AED=45°,∠BFC=60°,AE=2,EF=2﹣ ,F(xiàn)C=2 .
(1)BC= .
(2)求點(diǎn)D到BC的距離.
(3)求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市制藥廠需要緊急生產(chǎn)一批藥品,要求必須在12天(含12天)內(nèi)完成.為了加快生產(chǎn),車間采取工人加班,機(jī)器不停的生產(chǎn)方式,這樣每天藥品的產(chǎn)量y(噸)是時(shí)間x(天)一次函數(shù),且滿足表中所對應(yīng)的數(shù)量關(guān)系.由于機(jī)器負(fù)荷運(yùn)轉(zhuǎn)產(chǎn)生損耗,平均生產(chǎn)每噸藥品的成本P(元)與時(shí)間x(天)的關(guān)系滿足圖中的函數(shù)圖象.
時(shí)間x(天) | 2 | 4 |
每天產(chǎn)量y(噸) | 24 | 28 |
(1)求藥品每天的產(chǎn)量y(噸)是時(shí)間x(天)之間的函數(shù)關(guān)系式;
(2)當(dāng)5≤x≤12時(shí),直接寫出P(元)與時(shí)間x(天)的函數(shù)關(guān)系是P=;
(3)若這批藥品的價(jià)格為1400元/噸,每天的利潤設(shè)為W元,求哪一天的利潤最高,最高利潤是多少?(利潤=價(jià)格﹣成本)
(4)為了提高工人加班的津貼,藥廠決定在(3)中價(jià)格的基礎(chǔ)上每噸藥品加價(jià)a元,但必須滿足從第5天到第12天期間,每噸加價(jià)a后每天的利潤隨時(shí)間的增大而增大,直線寫出a的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com