【題目】(1)已知一個(gè)多邊形的內(nèi)角和是它的外角和的 3 倍,求這個(gè)多邊形的邊數(shù).

(2)如圖,點(diǎn)F ABC 的邊 BC 延長(zhǎng)線上一點(diǎn).DFAB,A=30°,F=40°,求∠ACF 的度數(shù).

【答案】(1)8;(2)80°.

【解析】

根據(jù)多邊形的外角和為360°,內(nèi)角和公式為:(n-2)180°,由題意可知:內(nèi)角和=3×外角和,設(shè)出未知數(shù),可得到方程,解方程即可.

在直角三角形DFB中,根據(jù)三角形內(nèi)角和定理,求得∠B的度數(shù);再在△ABC中,根據(jù)內(nèi)角與外角的性質(zhì)求∠ACF的度數(shù)即可.

(1)設(shè)這個(gè)多邊形的邊數(shù)為n,

∵n邊形的內(nèi)角和為(n﹣2)180°,多邊形的外角和為360°,

∴(n﹣2)180°=360°×3,

解得n=8.

∴這個(gè)多邊形的邊數(shù)為8.

(2)△DFB中,

∵DF⊥AB,

∴∠FDB=90°,

∵∠F=40°,∠FDB+∠F+∠B=180°,

∴∠B=50°.

△ABC中,

∵∠A=30°,∠B=50°,

∴∠ACF=30°+50°=80°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是直線AB上一點(diǎn),∠COD=90°,OEOF分別是∠COB、∠AOD的平分線,且∠COB:∠AOD=4:9.

(1)寫出圖中∠BOD的余角和補(bǔ)角;

(2)求∠AOC的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,CD垂直ABDPBC上的任意一點(diǎn),過(guò)P點(diǎn)分別作PEABPFCA,垂足分別為E,F

(1)PBC邊中點(diǎn),則PE,PF,CD三條線段有何數(shù)量關(guān)系(寫出推理過(guò)程)?

(2)若P為線段BC上任意一點(diǎn),則(1)中關(guān)系還成立嗎?

(3)若P為直線BC上任意一點(diǎn),則PE,PF,CD三條線段間有何數(shù)量關(guān)系(請(qǐng)直接寫出).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:點(diǎn)B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF.能否由上面的已知條件證明ABED?如果能,請(qǐng)給出證明;如果不能,請(qǐng)從下列三個(gè)條件中選擇一個(gè)合適的條件,添加到已知條件中,使ABED成立,并給出證明.

供選擇的三個(gè)條件(請(qǐng)從其中選擇一個(gè)):

AB=ED;

BC=EF;

③∠ACB=DFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,分別延長(zhǎng)△ABC的邊AB、ACD、E,∠CBD與∠BCE的平分線相交于點(diǎn)P,愛(ài)動(dòng)腦筋的小明在寫作業(yè)的時(shí)發(fā)現(xiàn)如下規(guī)律:

(1)若∠A=60°,則∠P=   °;

(2)若∠A=40°,則∠P=   °;

(3)若∠A=100°,則∠P=   °;

(4)請(qǐng)你用數(shù)學(xué)表達(dá)式歸納∠A與∠P的關(guān)系   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四張編號(hào)為A,B,C,D的卡片(除編號(hào)外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.
(1)我們知道,滿足a2+b2=c2的三個(gè)正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機(jī)抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;
(2)琪琪從中隨機(jī)抽取一張(不放回),再?gòu)氖O碌目ㄆ须S機(jī)抽取一張(卡片用A,B,C,D表示).請(qǐng)用列表或畫樹(shù)形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2 , 并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°AD平分∠CAB,交CB于點(diǎn)D,過(guò)點(diǎn)DDEAB,于點(diǎn)E

1)求證:△ACD≌△AED;

2)若∠B=30°CD=1,求BD的長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若∠2=6,則_______;如果∠BCD+ADC=180°,那么________;如果∠9=_____,那么ADBC;如果∠9=____,那么ABCD;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在同一平面內(nèi),一組互相平行的直線共有n條(n2,且n為正整數(shù)),它們和兩條平行線a,b相交,構(gòu)成若干個(gè)“#”字形. 設(shè)構(gòu)成的“#”字形的個(gè)數(shù)為x,請(qǐng)找出規(guī)律,并填寫下表.

n

2

3

4

5

n

x

查看答案和解析>>

同步練習(xí)冊(cè)答案