【題目】如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(-3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)設(shè)拋物線的對(duì)稱軸與x軸交于點(diǎn)M,問(wèn)在對(duì)稱軸上是否存在點(diǎn)P,使△CMP為等腰三角形?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖②,若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE、CE,求四邊形BOCE面積的最大值,并求此時(shí)E點(diǎn)的坐標(biāo).
【答案】(1)y=-x2-2x+3;(2)存在,P(-1,)或P(-1,-)或P(-1,6)或P(-1,);(3)當(dāng)a=-時(shí),S四邊形BOCE最大,且最大值為,此時(shí),點(diǎn)E坐標(biāo)為(-,).
【解析】
(1)已知拋物線過(guò)A、B兩點(diǎn),可將兩點(diǎn)的坐標(biāo)代入拋物線的解析式中,用待定系數(shù)法即可求出二次函數(shù)的解析式;
(2)可根據(jù)(1)的函數(shù)解析式得出拋物線的對(duì)稱軸,也就得出了M點(diǎn)的坐標(biāo),由于C是拋物線與y軸的交點(diǎn),因此C的坐標(biāo)為(0,3),根據(jù)M、C的坐標(biāo)可求出CM的距離.然后分三種情況進(jìn)行討論:
①當(dāng)CP=PM時(shí),P位于CM的垂直平分線上.求P點(diǎn)坐標(biāo)關(guān)鍵是求P的縱坐標(biāo),過(guò)P作PQ⊥y軸于Q,如果設(shè)PM=CP=x,那么直角三角形CPQ中CP=x,OM的長(zhǎng),可根據(jù)M的坐標(biāo)得出,CQ=3-x,因此可根據(jù)勾股定理求出x的值,P點(diǎn)的橫坐標(biāo)與M的橫坐標(biāo)相同,縱坐標(biāo)為x,由此可得出P的坐標(biāo).
②當(dāng)CM=MP時(shí),根據(jù)CM的長(zhǎng)即可求出P的縱坐標(biāo),也就得出了P的坐標(biāo)(要注意分上下兩點(diǎn)).
③當(dāng)CM=CP時(shí),因?yàn)?/span>C的坐標(biāo)為(0,3),那么直線y=3必垂直平分PM,因此P的縱坐標(biāo)是6,由此可得出P的坐標(biāo);
(3)由于四邊形BOCE不是規(guī)則的四邊形,因此可將四邊形BOCE分割成規(guī)則的圖形進(jìn)行計(jì)算,過(guò)E作EF⊥x軸于F,S四邊形BOCE=S△BFE+S梯形FOCE.直角梯形FOCE中,FO為E的橫坐標(biāo)的絕對(duì)值,EF為E的縱坐標(biāo),已知C的縱坐標(biāo),就知道了OC的長(zhǎng).在△BFE中,BF=BO-OF,因此可用E的橫坐標(biāo)表示出BF的長(zhǎng).如果根據(jù)拋物線設(shè)出E的坐標(biāo),然后代入上面的線段中,即可得出關(guān)于四邊形BOCE的面積與E的橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求得四邊形BOCE的最大值及對(duì)應(yīng)的E的橫坐標(biāo)的值.即可求出此時(shí)E的坐標(biāo).
(1)∵拋物線y=ax2+bx+3(a≠0)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(3,0),
∴
解得:.
∴所求拋物線解析式為:y=x22x+3;
(2)∵拋物線解析式為:y=x22x+3,
∴其對(duì)稱軸為,
∴設(shè)P點(diǎn)坐標(biāo)為(1,a),當(dāng)x=0時(shí),y=3,
∴C(0,3),M(1,0)
∴當(dāng)CP=PM時(shí),(1)2+(3a)2=a2,解得a=,
∴P點(diǎn)坐標(biāo)為:;
∴當(dāng)CM=PM時(shí),(1)2+32=a2,解得,
∴P點(diǎn)坐標(biāo)為:或;
∴當(dāng)CM=CP時(shí),由勾股定理得:(1)2+32=(1)2+(3a)2,解得a=6,
∴P點(diǎn)坐標(biāo)為:P4 (1,6).
綜上所述存在符合條件的點(diǎn)P,其坐標(biāo)為或 或P(1,6)或;
(3)過(guò)點(diǎn)E作EF⊥x軸于點(diǎn)F,設(shè)E(a,a22a+3)(3<a<0)
∴EF=a22a+3,BF=a+3,OF=a
∴
∴當(dāng)a=時(shí),S四邊形BOCE最大,且最大值為.
此時(shí),點(diǎn)E坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn),分別在正方形的邊,上,且,點(diǎn)在射線上(點(diǎn)不與點(diǎn)重合).將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,過(guò)點(diǎn)作的垂線,垂足為點(diǎn),交射線于點(diǎn).
(1)如圖1,若點(diǎn)是的中點(diǎn),點(diǎn)在線段上,線段,,的數(shù)量關(guān)系為 .
(2)如圖2,若點(diǎn)不是的中點(diǎn),點(diǎn)在線段上,判斷(1)中的結(jié)論是否仍然成立.若成立,請(qǐng)寫出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由.
(3)正方形的邊長(zhǎng)為6,,,請(qǐng)直接寫出線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小敏的爸爸買了某項(xiàng)體育比賽的一張門票,她和哥哥兩人都很想去觀看.可門票只有一張,讀九年級(jí)的哥哥想了一個(gè)辦法,拿了一個(gè)不透明的袋子中裝有1個(gè)紅球和2個(gè)白球,這些球除顏色外都相同,隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,如果兩次摸到的球顏色相同,則小敏去;如果兩次摸到的球顏色不同,則哥哥去.這個(gè)游戲規(guī)則公平嗎?請(qǐng)說(shuō)明理由; (請(qǐng)結(jié)合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】工廠對(duì)某種新型材料進(jìn)行加工,首先要將其加溫,使這種材料保持在一定溫度范圍內(nèi)方可加工,如圖是在這種材料的加工過(guò)程中,該材料的溫度y(℃)時(shí)間x(min)變化的數(shù)圖象,已知該材料,初始溫度為15℃,在溫度上升階段,y與x成一次函數(shù)關(guān)系,在第5分鐘溫度達(dá)到60℃后停止加溫,在溫度下降階段,y與x成反比例關(guān)系.
(1)寫出該材料溫度上升和下降階段,y與x的函數(shù)關(guān)系式:
①上升階段:當(dāng)0≤x≤5時(shí),y= ;
②下降階段:當(dāng)x>5時(shí),y .
(2)根據(jù)工藝要求,當(dāng)材料的溫度不低于30℃,可以進(jìn)行產(chǎn)品加工,請(qǐng)問(wèn)在圖中所示的溫度變化過(guò)程中,可以進(jìn)行加工多長(zhǎng)時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與x軸交于點(diǎn),,與y軸交于點(diǎn)C,頂點(diǎn)為D,直線AD交y軸于點(diǎn)E.
(1)求拋物線的解析式.
(2)如圖2,將沿直線AD平移得到.
①當(dāng)點(diǎn)M落在拋物線上時(shí),求點(diǎn)M的坐標(biāo).
②在移動(dòng)過(guò)程中,存在點(diǎn)M使為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種商品的標(biāo)價(jià)為500元/件,經(jīng)過(guò)兩次降價(jià)后的價(jià)格為405元/件,并且兩次降價(jià)的百分率相同.
(1)求該種商品每次降價(jià)的百分率;
(2)若該種商品進(jìn)價(jià)為400元/件,兩次降價(jià)共售出此種商品100件,為使兩次降價(jià)銷售的總利潤(rùn)不少于3200元.問(wèn)第一次降價(jià)后至少要售出該種商品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對(duì)應(yīng)的△C;平移△ABC,若A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(0,4),畫出平移后對(duì)應(yīng)的△;
(2)若將△C繞某一點(diǎn)旋轉(zhuǎn)可以得到△,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo);
(3)在軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c與y軸交于點(diǎn)A(0,2),對(duì)稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點(diǎn),點(diǎn)B在對(duì)稱軸左側(cè),BC=6.
(1)求此拋物線的解析式.
(2)點(diǎn)P在x軸上,直線CP將△ABC面積分成2:3兩部分,請(qǐng)直接寫出P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).
(1)畫出△ABC向下平移4個(gè)單位長(zhǎng)度得到的△A1B1C1,點(diǎn)C1的坐標(biāo)是 ;
(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com