【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷(xiāo)發(fā)現(xiàn):銷(xiāo)售單價(jià)x(元/件)與每天銷(xiāo)售量y(件)之間滿(mǎn)足如圖所示的關(guān)系:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫(xiě)出每天的利潤(rùn)W與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來(lái)保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?
【答案】(1)y=-x+180;(2)售價(jià)定為140元/件時(shí),每天最大利潤(rùn)W=1600元.
【解析】(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),根據(jù)所給函數(shù)圖象列出關(guān)于kb的關(guān)系式,求出k、b的值即可;
(2)把每天的利潤(rùn)W與銷(xiāo)售單價(jià)x之間的函數(shù)關(guān)系式化為二次函數(shù)頂點(diǎn)式的形式,由此關(guān)系式即可得出結(jié)論.
解:(1)設(shè)y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),由所給函數(shù)圖象可知,
,解得.
故y與x的函數(shù)關(guān)系式為y=﹣x+180;
(2)∵y=﹣x+180,
∴W=(x﹣100)y=(x﹣100)(﹣x+180)
=﹣x2+280x﹣18000
=﹣(x﹣140)2+1600,
∵a=﹣1<0,
∴當(dāng)x=140時(shí),W最大=1600,
∴售價(jià)定為140元/件時(shí),每天最大利潤(rùn)W=1600元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究:在邊長(zhǎng)為的正方形中,對(duì)角線(xiàn)、交于點(diǎn).
探究:如圖,若點(diǎn)是對(duì)角線(xiàn)上任意一點(diǎn),則線(xiàn)段的長(zhǎng)的取值范圍是__________;
探究:如圖,若點(diǎn)是內(nèi)任意一點(diǎn),點(diǎn)、分別是邊和對(duì)角線(xiàn)上的兩個(gè)動(dòng)點(diǎn),則當(dāng) 的值在探究中的取值范圍內(nèi)變化時(shí), 的周長(zhǎng)是否存在最小值?如果存在,請(qǐng)求出周長(zhǎng)的最小值,若不存在,請(qǐng)說(shuō)明理由;
問(wèn)題解決:如圖,在邊長(zhǎng)為的正方形中,點(diǎn)是內(nèi)任意一點(diǎn),且,點(diǎn)、分別是邊和對(duì)角線(xiàn)上的兩個(gè)動(dòng)點(diǎn),則當(dāng)的周長(zhǎng)取到最小值時(shí),求四邊形面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)為正方形的邊上一點(diǎn),,且,連接.
(1)求的度數(shù);
(2)如圖2,連接交于,交于.
求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角三角形ABC內(nèi)接于⊙O,AD⊥BC,垂足為D.
(1)如圖1, ,BD=DC,求∠B的度數(shù);
(2)如圖2,BE⊥AC,垂足為E,BE交AD于點(diǎn)F,過(guò)點(diǎn)B作BG∥AD交⊙O于點(diǎn)G,在AB邊上取一點(diǎn)H,使得AH=BG.求證:△AFH是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)、相交于點(diǎn)..
(1)求的度數(shù);
(2)以為端點(diǎn)引射線(xiàn)、,射線(xiàn)平分,且,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列結(jié)論中,錯(cuò)誤結(jié)論有( );①三角形三條高(或高的延長(zhǎng)線(xiàn))的交點(diǎn)不在三角形的內(nèi)部,就在三角形的外部;②一個(gè)多邊形的邊數(shù)每增加一條,這個(gè)多邊形的內(nèi)角和就增加360;③兩條平行直線(xiàn)被第三條直線(xiàn)所截,同旁?xún)?nèi)角的角平分線(xiàn)互相平行;④三角形的一個(gè)外角等于任意兩個(gè)內(nèi)角的和;⑤在中,若,則為直角三角形;⑥順次延長(zhǎng)三角形的三邊,所得的三角形三個(gè)外角中銳角最多有一個(gè)
A. 6個(gè)B. 5個(gè)C. 4個(gè)D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)如圖1,、分別平分、.試說(shuō)明:;
(2)如圖2,若,,、分別平分、,那么 (只要直接填上正確結(jié)論即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四邊形ABCD是菱形,且∠ABC=60,△ABE是等邊三角形,M為對(duì)角線(xiàn)BD(不含B點(diǎn))上任意一點(diǎn),將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則下列五個(gè)結(jié)論中正確的是( 。
①若菱形ABCD的邊長(zhǎng)為1,則AM+CM的最小值1;
②△AMB≌△ENB;
③S四邊形AMBE=S四邊形ADCM;
④連接AN,則AN⊥BE;
⑤當(dāng)AM+BM+CM的最小值為2時(shí),菱形ABCD的邊長(zhǎng)為2.
A. ①②③ B. ②④⑤ C. ①②⑤ D. ②③⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com