【題目】如圖,已知AB∥CD,現(xiàn)將一直角三角形PMN放入圖中,其中∠P=90°,PM交AB于點E,PN交CD于點F.
(1)當(dāng)△PMN所放位置如圖①所示時,求出∠PFD與∠AEM的數(shù)量關(guān)系;
(2)當(dāng)△PMN所放位置如圖②所示時,求證:∠PFD-∠AEM=90°;
(3)在(2)的條件下,若MN與CD交于點O,且∠DON=15°,∠PEB=30°,求∠N的度數(shù).
【答案】(1)∠PFD+∠AEM=90°;(2)見解析;(3)∠N=45°.
【解析】
(1)如圖,由平行線的性質(zhì)得出∠PFD=∠NPH,∠AEM=∠HPM,即可得出結(jié)果;
(2)設(shè)PN交AB于點G,由平行線的性質(zhì)得出∠PFD=∠PGB,再由三角形的外角等于與它不相鄰的兩個內(nèi)角的和即可得出結(jié)果;
(3)由三角形的外角等于與它不相鄰的兩個內(nèi)角的和求出∠PFD=90°+∠PEB=120°,再由平行線的性質(zhì)得出∠NFO=120°,然后由三角形的內(nèi)角和定理即可得出結(jié)果.
解:(1)如圖,過點P作PH∥AB.
∵AB∥CD,
∴PH∥CD,
∴∠PFD=∠NPH,∠AEM=∠HPM.
∵∠MPN=90°,
∴∠NPH+∠HPM=90°,
∴∠PFD+∠AEM=90°.
(2)證明:設(shè)PN交AB于點G.
∵AB∥CD,
∴∠PFD=∠PGB.
∵∠PGB-∠PEB=90°,∠PEB=∠AEM,
∴∠PFD-∠AEM=90°.
(3)由(2)得,∠PFD=90°+∠PEB=120°,
∴∠NFO=120°,
∴∠N=180°-∠DON-∠NFO=45°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,BE平分∠ABD,DE平分∠BDC,且BE與DE相交于點E,求證∠E=90° 證明:∵AB∥CD()
∴∠ABD+∠BDC=180°()
∵BE平分∠ABD()
∴∠EBD= ()
又∵DE平分∠BDC
∴∠BDE= ()
∴∠EBD+∠EDB= ∠ABD+ ∠BDC()
= (∠ABD+∠BDC)=90°
∴∠E=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=mx2﹣(2m﹣5)x+m﹣2的圖象與x軸有兩個公共點.
(1)求m的取值范圍,并寫出當(dāng)m取范圍內(nèi)最大整數(shù)時函數(shù)的解析式;
(2)題(1)中求得的函數(shù)記為C1 ,
①當(dāng)n≤x≤﹣1時,y的取值范圍是1≤y≤﹣3n,求n的值;
②函數(shù)C2:y=m(x﹣h)2+k的圖象由函數(shù)C1的圖象平移得到,其頂點P落在以原點為圓心,半徑為 的圓內(nèi)或圓上,設(shè)函數(shù)C1的圖象頂點為M,求點P與點M距離最大時函數(shù)C2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度數(shù):
(2)求證:DM∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10厘米,BC=8厘米,點D為AB 的中點.如果點P在線段BC上以3厘米/秒的速度由B點向C點運動,同時點Q在線段CA上由C點向A點運動.當(dāng)一個點停止運動時時,另一個點也隨之停止運動.設(shè)運動時間為t.
(1)用含有t的代數(shù)式表示CP.
(2)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;
(3)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某公路檢測中心在一事故多發(fā)地段安裝了一個測速儀器,檢測點設(shè)在距離公路10m的A處,測得一輛汽車從B處行駛到C處所用時間為0.9秒,已知∠B=30°,∠C=45°.
(1)求B,C之間的距離;(保留根號)
(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù): ≈1.7, ≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級某班同學(xué)在畢業(yè)晚會中進行抽獎活動,在一個不透明的口袋中有三個完全相同的小球,把它們分別標(biāo)號為1,2,3.隨機摸出一個小球記下標(biāo)號后放回?fù)u勻,再從中隨機摸出一個小球記下標(biāo)號.
(1)請用列表或畫樹形圖的方法(只選其中一樣),表示兩次摸出小球上的標(biāo)號的所有結(jié)果;
(2)規(guī)定當(dāng)兩次摸出的小球標(biāo)號相同時中獎,求中獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com