【題目】小明手上一張扇形紙片OAB.現(xiàn)要求在紙片上截一個正方形,使它的面積盡可能大.
小明的方案是:如圖,在扇形紙片OAB內,畫正方形CDEF,使C、D在OA上,F在OB上;連接OE并延長交弧AB于I,畫IH∥ED交OA于H,IJ∥OA交OB于J,再畫JG∥FC交OA于G.
(1)你認為小明畫出的四邊形GHIJ是正方形嗎?如果是,請證明.如果不是,請說明理由.
(2)如果扇形OAB的圓心角∠AOB=30°,OA=6cm,小明截得的四邊形GHIJ面積是多少(結果精確到0.1cm).
(3)(1)中小明畫出的四邊形GHIJ如果是正方形,我們把它叫做扇形的內接正方形(四個頂點分別在扇形的半徑和弧上).請你再畫出一種不同于圖(1)的扇形的內接正方形(保留畫圖痕跡,不要求證明)
【答案】(1)是,詳見解析;(2)正方形GHIJ的面積是4.3cm2;(3)詳見解析.
【解析】試題分析:(1)根據(jù)HI∥DE,JG∥FC,JI∥GH,利用矩形的判定得出四邊形JGHI是矩形,進而利用平行線分線段成比例定理得出即可;
(2)正方形GHIJ的邊長為x,則GH=HI=JG=x,表示出GO= , ,再利用勾股定理求解;
(3)畫一個使正方形一邊平行于AB的一個正方形即可.
(1)答:是.
證明:∵在扇形紙片OAB內,畫正方形CDEF,IH∥ED交OA于H,
IJ∥OA交OB于J,JG∥FC交OA于G,
∴HI∥DE,JG∥FC,JI∥GH,
∴∠JGH=∠IHG=∠JIH=90°,
∴四邊形JGHI是矩形,
∵HI∥DE,JG∥FC,JI∥GH,
∴,,
∴,
∵FE=DE,
∴JI=HI,
∴矩形JGHI是正方形,
(2)設正方形GHIJ的邊長為x,則GH=HI=JG=x,
∵∠AOB=30°,OA=6cm,
在直角三角形△OGJ,∠GOJ=30°,
∴GO=x,
∴HO=x+x,
∴,
x2=≈4.3,
所以正方形GHIJ的面積是4.3cm2.
(3)如圖:
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)如圖,在△ABC中,AB=AC,∠DAC是△ABC的一個外角.
實踐與操作:
根據(jù)要求尺規(guī)作圖,并在圖中標明相應字母(保留作圖痕跡,不寫作法).
(1)作∠DAC的平分線AM;
(2)作線段AC的垂直平分線,與AM交于點F,與BC邊交于點E,連接AE、CF.
猜想并證明:
判斷四邊形AECF的形狀并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某次大型活動,組委會啟用無人機航拍活動過程,在操控無人機時應根據(jù)現(xiàn)場狀況調節(jié)高度,已知無人機在上升和下降過程中速度相同,設無人機的飛行高度h(米)與操控無人機的時間t(分鐘)之間的關系如圖中的實線所示,根據(jù)圖象回答下列問題:
(1)圖中的自變量是______,因變量是______;
(2)無人機在75米高的上空停留的時間是______分鐘;
(3)在上升或下降過程中,無人機的速度______為米/分;
(4)圖中a表示的數(shù)是______;b表示的數(shù)是______;
(5)圖中點A表示______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,,點為邊上一點,連接BD,點為上一點,連接,,過點作,垂足為,交于點.
(1)求證:;
(2)如圖2,若,點為的中點,求證:;
(3)在(2)的條件下,如圖3,若,求線段的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點,AC平分∠DAB,ADCD,垂足為D,AD交⊙O 于E,連接CE.(1)求證:CD 是⊙O 的切線
(2)若E是弧AC的中點,⊙O 的半徑為1,求圖中陰影部分的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在離水面高度為5m的岸上有人用繩子拉船靠岸,開始繩子與水面的夾角為30°,此人以每秒0.5m的速度收繩.
(1)8秒后船向岸邊移動了多少米?
(2)寫出還沒收的繩子的長度S米與收繩時間t秒的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是等邊三角形ABC內一點,且PA=3,PB=4,PC=5,若將△APB繞著點B逆時針旋轉后得到△CQB,則∠APB的度數(shù) ______ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com