【題目】如圖,已知直線yx+2x軸、y軸分別交于點(diǎn)B,C,拋物線yx2+bx+c過點(diǎn)B、C,且與x軸交于另一個(gè)點(diǎn)A

1)求該拋物線的表達(dá)式;

2)若點(diǎn)Px軸上方拋物線上一點(diǎn),連接OP

①若OP與線段BC交于點(diǎn)D,則當(dāng)DOP中點(diǎn)時(shí),求出點(diǎn)P坐標(biāo).

②在拋物線上是否存在點(diǎn)P,使得∠POC=∠ACO若存在,求出點(diǎn)P坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)y=﹣x2+x+2;(2)①點(diǎn)P坐標(biāo)為(23);②存在點(diǎn)P,1)或(,7)使得∠POC=∠ACO

【解析】

1x軸、y軸分別交于點(diǎn)B4,0)、C02),由題意可得即可求解;

2)①過點(diǎn)PPE∥OC,交BC于點(diǎn)E.根據(jù)題意得出△OCD≌△PED,從而得出PEOC2,再根據(jù) 即可求解;

②當(dāng)點(diǎn)Py軸右側(cè),POAC時(shí),∠POC=ACO.拋物線與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),則點(diǎn)A坐標(biāo)為(-1,0).則直線AC的解析式為y=2x+2.直線OP的解析式為y=2x,即可求解;當(dāng)點(diǎn)Py軸右側(cè),設(shè)OP與直線AC交于點(diǎn)G,當(dāng)CG=OG時(shí),∠POC=ACO,根據(jù)等腰三角形三線合一,則CF=OF=1,可得:點(diǎn)G坐標(biāo)為即可求解.

1∵y=﹣x+2x軸、y軸分別交于點(diǎn)B40)、C02).

由題意可得,解得:,

拋物線的表達(dá)式為y=﹣x2+x+2;

2如圖,過點(diǎn)PPE∥OC,交BC于點(diǎn)E

點(diǎn)DOP的中點(diǎn),

∴△OCD≌△PEDAAS),

∴PEOC2,

設(shè)點(diǎn)P坐標(biāo)為(m,﹣m2+m+2),點(diǎn)E坐標(biāo)為(m,﹣m+2),

PE=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m2,

解得m1m22

點(diǎn)P坐標(biāo)為(2,3);

存在點(diǎn)P,使得∠POC∠ACO

理由:分兩種情況討論.

如上圖,當(dāng)點(diǎn)Py軸右側(cè),

PO∥AC時(shí),∠POC∠ACO

拋物線與x軸交于AB兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè),

點(diǎn)A坐標(biāo)為(﹣1,0).

直線AC的解析式為y2x+2

直線OP的解析式為y2x,

解方程組,解得:x(舍去負(fù)值)

點(diǎn)P坐標(biāo)為(,1).

如圖,當(dāng)點(diǎn)Py軸右側(cè),

設(shè)OP與直線AC交于點(diǎn)G,當(dāng)CGOG時(shí)∠POC∠ACO,

過點(diǎn)GGF⊥OC,垂足為F

根據(jù)等腰三角形三線合一,則CFOF1

可得點(diǎn)G坐標(biāo)為(﹣,1

直線OG的解析式為y=﹣2x;

y=﹣2x代入拋物線表達(dá)式并解得x(不合題意值已舍去).

點(diǎn)P坐標(biāo)為(7).

綜上所述,存在點(diǎn)P,1)或(,7)使得∠POC∠ACO

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),yx的增大而增大,且-2≤x≤1時(shí),y的最大值為9,則a的值為  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點(diǎn),的長為(

A.B.C.πD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AEBD于點(diǎn)E,點(diǎn)P是邊AD上一點(diǎn).

1)若BP平分∠ABD,交AE于點(diǎn)G,PFBD于點(diǎn)F,如圖①,證明四邊形AGFP是菱形;

2)若PEEC,如圖②,求證:AEABDEAP

3)在(2)的條件下,若AB1,BC2,求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是中國古代第一部數(shù)學(xué)專著,是《算經(jīng)十書》中最重要的一種,成于公元一世紀(jì)左右.在其勾股章中有這樣一個(gè)問題:今有邑,東西七里,南北九里,各開中門,出東門一十五里有木,問:出南門幾何步而見木?意思是說:如圖,矩形城池ABCD,東邊城墻AB9里,南邊城墻AD7里,東門點(diǎn)E,南門點(diǎn)F分別是ABAD的中點(diǎn),EGABFHADEG15里,HG經(jīng)過點(diǎn)A,則FH等于多少里?請(qǐng)你根據(jù)上述題意,求出FH的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC3,∠BAC90°,正方形DEFG的四個(gè)頂點(diǎn)在△ABC的邊上,連接AG、AF分別交DE于點(diǎn)M和點(diǎn)N,則線段MN的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y1與一次函數(shù)y2ax+b的圖象交于點(diǎn)A(﹣2,5)和點(diǎn)Bn,l).

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)請(qǐng)結(jié)合圖象直接寫出當(dāng)y1y2時(shí)自變量x的取值范圍;

3)點(diǎn)Py軸上的一個(gè)動(dòng)點(diǎn),若SAPB8,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,2),點(diǎn)P在直線y=﹣x上運(yùn)動(dòng),∠PAB90°,∠APB30°,在點(diǎn)P運(yùn)動(dòng)的過程中OB的最小值為(  )

A.3.5B.2C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1)。

(1)以O(shè)點(diǎn)為位似中心在y軸的左側(cè)將OBC放大到兩倍畫出圖形。

(2)寫出B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B、C的坐標(biāo);

(3)如果OBC內(nèi)部一點(diǎn)M的坐標(biāo)為(x,y),寫出M的對(duì)應(yīng)點(diǎn)M的坐標(biāo)。

查看答案和解析>>

同步練習(xí)冊(cè)答案