【題目】如圖,在 RtABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 DE 兩點(diǎn),的長為(

A.B.C.πD.

【答案】B

【解析】

連接OE、OD,由切線的性質(zhì)可知OEAC,ODAB,由于OBC的中點(diǎn),從而可知OD是中位線,所以可知∠B=45°,從而可知半徑r的值,最后利用弧長公式即可求出答案.

連接OEOD,

設(shè)半徑為r,

∵⊙O分別與AB,AC相切于DE兩點(diǎn),

OEAC,ODAB,

OBC的中點(diǎn),

OD是中位線,

OD=AE= AC,

AC=2r,

同理可知:AB=2r,

AB=AC

∴∠B=45°,

BC=2

∴由勾股定理可知AB=2,

r=1,

= =

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正方形ABCD和正方形BEFG如圖(一)所示放置,已知AB5,BE6,將正方形BEFG繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一定的角度α0°≤α360°)到圖(二)所示:連接AE,CG

1)求線段AECG的關(guān)系,并給出證明

2)當(dāng)旋轉(zhuǎn)至某一個(gè)角度時(shí),點(diǎn)C,EG在同一條直線上,請畫出示意圖形,并求出此時(shí)AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,P是底邊上的一個(gè)動(dòng)點(diǎn)(PBC不重合),以P為圓心,為半徑的與射線交于點(diǎn)D,射線交射線于點(diǎn)E

1)若點(diǎn)E在線段的延長線上,設(shè),y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

2)連接,若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABO的三個(gè)頂點(diǎn)坐標(biāo)分別為:A(2,3)、B(3,1)、O(0,0).

(1)將△ABO向左平移4個(gè)單位,畫出平移后的△A1B1O1

(2)將△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2O.此時(shí)四邊形ABA2B2的形狀是  

(3)在平面上是否存在點(diǎn)D,使得以A、B、O、D為頂點(diǎn)的四邊形是平行四邊形,若存在請直接寫出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A(-2,0)B(4,0)兩點(diǎn),且函數(shù)的最大值為9.

(1)求二次函數(shù)的解析式;

(2)設(shè)此二次函數(shù)圖象的頂點(diǎn)為C,與y軸交點(diǎn)為D,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,ABAC3,∠BAC100°,DBC的中點(diǎn).

小明對圖①進(jìn)行了如下探究:在線段AD上任取一點(diǎn)P,連接PB.將線段PB繞點(diǎn)P按逆時(shí)針方向旋轉(zhuǎn)80°,點(diǎn)B的對應(yīng)點(diǎn)是點(diǎn)E,連接BE,得到△BPE.小明發(fā)現(xiàn),隨著點(diǎn)P在線段AD上位置的變化,點(diǎn)E的位置也在變化,點(diǎn)E可能在直線AD的左側(cè),也可能在直線AD上,還可能在直線AD的右側(cè).

請你幫助小明繼續(xù)探究,并解答下列問題:

1)當(dāng)點(diǎn)E在直線AD上時(shí),如圖②所示.

①∠BEP   °;

②連接CE,直線CE與直線AB的位置關(guān)系是   

2)請?jiān)趫D③中畫出△BPE,使點(diǎn)E在直線AD的右側(cè),連接CE.試判斷直線CE與直線AB的位置關(guān)系,并說明理由.

3)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),求AE的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l與△ABC在邊長為1個(gè)單位長度的小正方形網(wǎng)格中,點(diǎn)A,B,C都為網(wǎng)格線的交點(diǎn).

(1)請畫出△ABC關(guān)于直線l對稱的△A1B1C1(點(diǎn)A,B,C的對稱點(diǎn)分別為A1,B1,C1).

(2)請畫出將線段AC向左平移3個(gè)單位,再向下平移5個(gè)單位得到的線段A2C2(點(diǎn)A,C的對應(yīng)點(diǎn)分別為A2,C2),再以A2C2為斜邊畫一個(gè)等腰直角三角形A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,0)B(0,2),C(2,1);

1)以原點(diǎn)O為位似中心,在第二象限畫出A1B1C1,使A1B1C1ABC的位似比為21

2)點(diǎn)Pa,b)為線段AC上的任意一點(diǎn),則點(diǎn)PA1B1C1中的對應(yīng)點(diǎn)P1的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,上一點(diǎn),連接,.

1)若,,求的長;

2)如圖2,過,上一點(diǎn),,且.求證:.

查看答案和解析>>

同步練習(xí)冊答案