【題目】如圖,在中,,以為直徑的分別與、交于點、,過點于點

1)求證:的切線;

2)若的半徑為,,求陰影部分的面積.

【答案】1)見解析;(2S陰影=

【解析】

1)連接OD,先說明OD∥AC,再得到OD⊥DF,即可完成證明;

2)連接OE,過OOM⊥ACM,先求出AE、OM的長和∠AOE的度數(shù),再分別求出SAOES扇形AOE,最后根據(jù)SAOE-S扇形AOE解答即可;

1)證明:連接OD,

∵OB=OD

∴∠ABC=∠ODB

∵AB=AC

∴∠ABC=∠ACB

∴∠ODB=∠ACB

∴OD∥AC

∴OD⊥DF

∴DF⊙O的切線

2)解:連接OE,過OOM⊥ACM

∵DF⊥AC,∠CDF=15°

∴∠ABC=∠ACB=75°

∴∠BAC=30°

∵OA=OE

∴∠AOE=120°

∵⊙O的半徑為3

∴S扇形AOE==

∵∠BAC=30°

∵OA=OE=3

∵OM⊥AC,

∴ AE=2AM=,

SAOE=

∴S陰影=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與x軸交于AB兩點,與y軸交于點C0,﹣2),點A的坐標是(20),P為拋物線上的一個動點,過點PPDx軸于點D,交直線BC于點E,拋物線的對稱軸是直線x=﹣1

1)求拋物線的函數(shù)表達式;

2)若點P在第二象限內(nèi),且PEOD,求△PBE的面積.

3)在(2)的條件下,若M為直線BC上一點,在x軸的上方,是否存在點M,使△BDM是以BD為腰的等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為積極響應(yīng)“弘揚傳統(tǒng)文化”的號召,某學校倡導全校1200名學生進行經(jīng)典詩詞誦背活動,并在活動之后舉辦經(jīng)典詩詞大賽.為了了解本次系列活動的持續(xù)效果,學校團委在活動啟動之初,隨機抽取部分學生調(diào)查“一周詩詞誦背數(shù)量”,根據(jù)調(diào)査結(jié)果繪制成的統(tǒng)計圖(部分)如圖

大賽結(jié)束后一個月,再次抽查這部分學生的周詩詞誦背數(shù)量,繪制成如下統(tǒng)計表:

誦背數(shù)量

3

4

5

6

7

8

人數(shù)

10

10

15

40

25

20

請根據(jù)調(diào)查的信息分析

1)學校團委一共抽取了多少名學生進行調(diào)查

2)大賽前誦背4首人數(shù)所在扇形的圓心角為 ,并補充完條形統(tǒng)計圖

3)估計大賽后一個月該校學生一周詩詞誦背6(6)以上的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C的中點,連接AC并延長至點D,使CDAC,點EOB上一點,且,CE的延長線交DB的延長線于點FAF交⊙O于點H,連接BH

1)求證:BD是⊙O的切線;(2)當OB2時,求BH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線過坐標原點和兩點.

1)求該拋物線的表達式;

2)在線段右側(cè)的拋物線上是否存在一點,使得的面積為兩部分?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 鄭州外國語中學為了解學生課下閱讀所用時間的情況,從各年級學生中隨機抽查了一部分學生進行統(tǒng)計,下面是針對此次統(tǒng)計所制作的不完整的頻數(shù)分布表和頻數(shù)分布直方圖,請根據(jù)圖表信息回答下列問題:

組別

時間段(小時)

頻數(shù)

頻率

1

0≤x0.5

10

0.05

2

0.5≤x1.0

20

0.10

3

1.0≤x1.5

80

b

4

1.5≤x2.0

a

0.35

5

2.0≤x2.5

12

0.06

6

2.5≤x3.0

8

0.04

1)表中a=______b=______;

2)請補全頻數(shù)分布直方圖;

3)樣本中,學生日閱讀所用時間的中位數(shù)落在第______組;

4)該校共有學生3000人,請估計學生日閱讀量不少于1.5小時的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知銳角△ABC,∠ABC45°,ADBCDBEACE,交ADF

1)求證:△BDF≌△ADC

2)若BD4,DC3,求線段BE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題探究.

如圖,在平面直角坐標系中,A(0,8),C(60),以O,AC為頂點作矩形OABC,動點P從點A出發(fā),沿AO4個單位每秒的速度向O運動;同時動點Q從點O出發(fā)沿OC3個單位每秒的速度向C運動.設(shè)運動時間為t,當動點P,Q中的任何一個點到達終點后,兩點同時停止運動.連接PQ

(情景導入)當t1時,求出直線PQ的解析式.

(深入探究)①連接AC,若△POQ與△AOC相似,求出t的值.

②如圖,取PQ的中點M,以QM為半徑向右側(cè)作半圓M,直接寫出半圓M的面積的最小值,并直接寫出此時t的值.

(拓展延伸)如圖,過點A作半圓M的切線,交直線BC于點H,于半圓M切于點N

①在P,Q的整個運動過程中,點H的運動路徑為   

②若固定點H(6,2)不動,則在整個運動過程中,半圓M能否與梯形AOCH相切?若能,求出此時t的值;若不能,請證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cmECD邊上一點,∠DAE=30°MAE的中點,過點M作直線分別與AD、BC相交于點PQ.若PQ=AE,則AP等于 cm

查看答案和解析>>

同步練習冊答案