【題目】已知銳角△ABC,∠ABC=45°,AD⊥BC于D,BE⊥AC于E,交AD于F.
(1)求證:△BDF≌△ADC;
(2)若BD=4,DC=3,求線段BE的長(zhǎng)度.
【答案】(1)見(jiàn)解析;(2)BE=.
【解析】
(1)由題意可得AD=BD,由余角的性質(zhì)可得∠CBE=∠DAC,由“ASA”可證△BDF≌△ADC;(2)由全等三角形的性質(zhì)可得AD=BD=4,CD=DF=3,BF=AC,由三角形的面積公式可求BE的長(zhǎng)度.
解:(1)∵AD⊥BC,∠ABC=45°
∴∠ABC=∠BAD=45°,
∴AD=BD,
∵DA⊥BC,BE⊥AC
∴∠C+∠DAC=90°,∠C+∠CBE=90°
∴∠CBE=∠DAC,且AD=BD,∠ADC=∠ADB=90°
∴△BDF≌△ADC(ASA)
(2)∵△BDF≌△ADC
∴AD=BD=4,CD=DF=3,BF=AC
∴BF= =5
∴AC=5,
∵S△ABC=×BC×AD=×AC×BE
∴7×4=5×BE
∴BE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線,點(diǎn)A1坐標(biāo)為(1,0),過(guò)點(diǎn)A1作x軸的垂線交直線于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A2;再過(guò)點(diǎn)A2作x軸的垂線交直線于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A2020的坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與軸交于兩點(diǎn),過(guò)點(diǎn)的直線交拋物線于點(diǎn).
(1)求此拋物線的解析式;
(2)在線段上有一動(dòng)點(diǎn),當(dāng)點(diǎn)在某個(gè)位置時(shí),的面積為,求此時(shí)點(diǎn)坐標(biāo);
(3)如圖2,當(dāng)動(dòng)點(diǎn)在直線與拋物線圍成的封閉線上運(yùn)動(dòng)時(shí),是否存在以為直角邊的直角三角形,若存在,請(qǐng)求出符合要求的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以為直徑的分別與、交于點(diǎn)、,過(guò)點(diǎn)作于點(diǎn).
(1)求證:是的切線;
(2)若的半徑為,,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新冠肺炎疫情期間,甲、乙兩家網(wǎng)店以同樣價(jià)格銷售相同的防疫用品,它們的優(yōu)惠方案分別為:甲店,一次性購(gòu)物中超過(guò)100元后的價(jià)格部分打七折;乙店,一次性購(gòu)物中超過(guò)500元后的價(jià)格部分打五折,設(shè)商品原價(jià)為元(),購(gòu)物應(yīng)付金額為元.
(1)求出在甲店購(gòu)物時(shí)與之間的函數(shù)解析式;
(2)在乙店購(gòu)物時(shí)與之間的函數(shù)圖像如圖所示(圖中線段、射線),請(qǐng)?jiān)趫D中畫(huà)出(l)中所得函數(shù)當(dāng)時(shí)的圖像,并分別寫(xiě)出該圖像與圖中、的交點(diǎn)和的坐標(biāo);
(3)根據(jù)函數(shù)圖像,請(qǐng)直接寫(xiě)出新冠肺炎疫情期間選擇哪家網(wǎng)店購(gòu)物更優(yōu)惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線與軸交于點(diǎn),與軸交于點(diǎn),在軸上有一動(dòng)點(diǎn),過(guò)點(diǎn)作軸的垂線交直線于點(diǎn),交拋物線于點(diǎn),過(guò)點(diǎn)作于點(diǎn).
(1)求的值和直線的函數(shù)表達(dá)式;
(2)設(shè)的周長(zhǎng)為,的周長(zhǎng)為,若,求的值;
(3)如圖2,在(2)條件下,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,旋轉(zhuǎn)角為,連接、,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】規(guī)定一種新的運(yùn)算△:a△b=a(a+b)﹣a+b.例如,1△2=1×(1+2)﹣1+2=4.
(1)8△9= ;
(2)若x△3=11,求x的值;
(3)求代數(shù)式﹣x△4的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景
在綜合實(shí)踐課上,同學(xué)們以圖形的平移與旋轉(zhuǎn)為主題開(kāi)展數(shù)學(xué)活動(dòng),如圖(1),先將一張等邊三角形紙片對(duì)折后剪開(kāi),得到兩個(gè)互相重合的△ABD和△EFD,點(diǎn)E與點(diǎn)A重合,點(diǎn)B與點(diǎn)F重合,然后將△EFD繞點(diǎn)D順時(shí)針旋轉(zhuǎn),使點(diǎn)F落在邊AB上,如圖(2),連接EC.
操作發(fā)現(xiàn)
(1)判斷四邊形BFEC的形狀,并說(shuō)明理由;
實(shí)踐探究
(2)聰聰提出疑問(wèn):若等邊三角形的邊長(zhǎng)為8,能否將圖(2)中的△EFD沿BC所在的直線平移a個(gè)單位長(zhǎng)度(規(guī)定沿射線BC方向?yàn)檎,得?/span>△,連接,,使得得到的四邊形為菱形,請(qǐng)你幫聰聰解決這個(gè)問(wèn)題,若能,請(qǐng)求出a的值;若不能,請(qǐng)說(shuō)明理由。
(3)老師提出問(wèn)題:請(qǐng)參照聰聰?shù)乃悸,若等邊三角形的邊長(zhǎng)為8,將圖(2)中的△EFD在平面內(nèi)進(jìn)行一次平移,得到△,畫(huà)出平移后構(gòu)造出的新圖形,標(biāo)明字母,說(shuō)明平移及構(gòu)圖方法,寫(xiě)出你發(fā)現(xiàn)的一個(gè)結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A(﹣1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),點(diǎn)D在拋物線上且橫坐標(biāo)為2.
(1)求這條拋物線的表達(dá)式;
(2)將該拋物線向下平移,使得新拋物線的頂點(diǎn)G在x軸上.原拋物線上一點(diǎn)M平移后的對(duì)應(yīng)點(diǎn)為點(diǎn)N,如果△AMN是以MN為底邊的等腰三角形,求點(diǎn)N的坐標(biāo);
(3)若點(diǎn)P為拋物線上第一象限內(nèi)的動(dòng)點(diǎn),過(guò)點(diǎn)B作BE⊥OP,垂足為E,點(diǎn)Q為y軸上的一個(gè)動(dòng)點(diǎn),連接QE、QD,試求QE+QD的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com