【題目】勾股定理是幾何中的一個(gè)重要定理,在我國(guó)古算書《周髀算經(jīng)》中就有“若勾三,股四,則弦五”的記載.如圖1是由邊長(zhǎng)相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是由圖1放入矩形內(nèi)得到的,已知∠BAC=90°,AB=6,AC=8,點(diǎn)D、E、F、G、H、I都在矩形KLMJ的邊上,則矩形KLMJ的周長(zhǎng)為( )
A. 40B. 44C. 84D. 88
【答案】C
【解析】
延長(zhǎng)AB交KF于點(diǎn)O,延長(zhǎng)AC交GM于點(diǎn)P,可得四邊形AOLP是正方形,然后求出正方形的邊長(zhǎng),再求出矩形KLMJ的長(zhǎng)與寬,然后根據(jù)矩形的周長(zhǎng)公式列式計(jì)算即可得解.
如圖,延長(zhǎng)AB交KF于點(diǎn)O,延長(zhǎng)AC交GM于點(diǎn)P,
可證得四邊形AOLP是正方形,邊長(zhǎng)AO=AB+AC=6+8=14,
∴KL=6+14=20,LM=8+14=22,
∴矩形KLMJ的周長(zhǎng)為2×(20+22)=84.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+bx+c與x軸交于點(diǎn)A(4,﹣5).
(1)如圖,過(guò)點(diǎn)A分別向x軸、y軸作垂線,垂足分別為B、C,得到矩形ABOC,且拋物線經(jīng)過(guò)點(diǎn)C.
①求拋物線的解析式.
②將拋物線沿直線x=m(2>m>0)翻折,分別交線段OB、AC于D,E兩點(diǎn).若直線DE剛好平分矩形ABOC的面積,求m的值.
(2)將拋物線旋轉(zhuǎn)180°,使點(diǎn)A的對(duì)應(yīng)點(diǎn)為A1(m﹣2,n﹣4),其中m≤2.若旋轉(zhuǎn)后的拋物線仍然經(jīng)過(guò)點(diǎn)A,求旋轉(zhuǎn)后的拋物線頂點(diǎn)所能達(dá)到最低點(diǎn)時(shí)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的方程x2﹣2ax+a﹣2=0的一個(gè)實(shí)數(shù)根為x1≥1,另一個(gè)實(shí)數(shù)根x2≤﹣1,則拋物線y=﹣x2+2ax+2﹣a的頂點(diǎn)到x軸距離的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).
人類會(huì)作圓并且真正了解圓的性質(zhì)是在2000多年前,由我國(guó)的墨子給出圓的概念:“一中同長(zhǎng)也.”.意思說(shuō),圓有一個(gè)圓心,圓心到圓周的長(zhǎng)都相等.這個(gè)定義比希臘數(shù)學(xué)家歐幾里得給圓下的定義要早100年.與圓有關(guān)的定理有很多,弦切角定理就是其中之一.
我們把頂點(diǎn)在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角.
弦切角定理:弦切角的度數(shù)等于它所夾弧所對(duì)的圓周角度數(shù).
下面是弦切角定理的部分證明過(guò)程:
證明:如圖①,AB與⊙O相切于點(diǎn)A.當(dāng)圓心O在弦AC上時(shí),容易得到∠CAB=90°,所以弦切角∠BAC的度數(shù)等于它所夾半圓所對(duì)的圓周角度數(shù).
如圖②,AB與⊙O相切于點(diǎn)A,當(dāng)圓心O在∠BAC的內(nèi)部時(shí),過(guò)點(diǎn)A作直徑AD交⊙O于點(diǎn)D,在上任取一點(diǎn)E,連接EC,ED,EA,則∠CED=∠CAD.
…
任務(wù):
(1)請(qǐng)按照上面的證明思路,寫出該證明的剩余部分;
(2)如圖③,AB與⊙O相切于點(diǎn)A.當(dāng)圓心O在∠BAC的外部時(shí),請(qǐng)寫出弦切角定理的證明過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,將繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)到的位置,連接,求的長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進(jìn)價(jià)之和為18元.當(dāng)銷售1千克甲種蘋果和1千克乙種蘋果利潤(rùn)分別為4元和2元時(shí),陳老師購(gòu)買3千克甲種蘋果和4千克乙種蘋果共用82元.
(1)求甲、乙兩種蘋果的進(jìn)價(jià)分別是每千克多少元?
(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價(jià)各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價(jià)提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(1,2),B(1,﹣1),C(2,2),拋物線y=ax2(a≠0)經(jīng)過(guò)△ABC區(qū)域(包括邊界),則a的取值范圍是( 。
A.a≤﹣1或a≥2B.≤a≤2
C.﹣1≤a<0或1<a≤D.﹣1≤a<0或0<a≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】十八大以來(lái),某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級(jí)表演“經(jīng)典誦讀”、“民樂(lè)演奏”、“歌曲聯(lián)唱”、“民族舞蹈”等節(jié)目.小穎對(duì)每屆藝術(shù)節(jié)表演這些節(jié)目的班級(jí)數(shù)進(jìn)行統(tǒng)計(jì),并繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)五屆藝術(shù)節(jié)共有________個(gè)班級(jí)表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計(jì)圖中,第四屆班級(jí)數(shù)的扇形圓心角的度數(shù)為________;
(2)補(bǔ)全折線統(tǒng)計(jì)圖;
(3)第六屆藝術(shù)節(jié),某班決定從這四項(xiàng)藝術(shù)形式中任選兩項(xiàng)表演(“經(jīng)典誦讀”、“民樂(lè)演奏”、“歌曲聯(lián)唱”、“民族舞蹈”分別用,,,表示).利用樹狀圖或表格求出該班選擇和兩項(xiàng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD的邊長(zhǎng)為1,∠ABC=120°,E、F、P分別是AB、BC、AC上的動(dòng)點(diǎn),則PE+PF的最小值為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com