【題目】勾股定理是幾何中的一個(gè)重要定理,在我國(guó)古算書《周髀算經(jīng)》中就有若勾三,股四,則弦五的記載.如圖1是由邊長(zhǎng)相等的小正方形和直角三角形構(gòu)成的,可以用其面積關(guān)系驗(yàn)證勾股定理.圖2是由圖1放入矩形內(nèi)得到的,已知∠BAC=90°,AB=6,AC=8,點(diǎn)DE、FG、H、I都在矩形KLMJ的邊上,則矩形KLMJ的周長(zhǎng)為(

A. 40B. 44C. 84D. 88

【答案】C

【解析】

延長(zhǎng)ABKF于點(diǎn)O,延長(zhǎng)ACGM于點(diǎn)P,可得四邊形AOLP是正方形,然后求出正方形的邊長(zhǎng),再求出矩形KLMJ的長(zhǎng)與寬,然后根據(jù)矩形的周長(zhǎng)公式列式計(jì)算即可得解.

如圖,延長(zhǎng)ABKF于點(diǎn)O,延長(zhǎng)ACGM于點(diǎn)P

可證得四邊形AOLP是正方形,邊長(zhǎng)AO=AB+AC=6+8=14,

KL=6+14=20LM=8+14=22,

∴矩形KLMJ的周長(zhǎng)為20+22=84

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yx2+bx+cx軸交于點(diǎn)A(4,﹣5)

1)如圖,過點(diǎn)A分別向x軸、y軸作垂線,垂足分別為BC,得到矩形ABOC,且拋物線經(jīng)過點(diǎn)C

①求拋物線的解析式.

②將拋物線沿直線xm2m0)翻折,分別交線段OB、ACD,E兩點(diǎn).若直線DE剛好平分矩形ABOC的面積,求m的值.

2)將拋物線旋轉(zhuǎn)180°,使點(diǎn)A的對(duì)應(yīng)點(diǎn)為A1(m2n4),其中m≤2.若旋轉(zhuǎn)后的拋物線仍然經(jīng)過點(diǎn)A,求旋轉(zhuǎn)后的拋物線頂點(diǎn)所能達(dá)到最低點(diǎn)時(shí)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的方程x2﹣2ax+a﹣2=0的一個(gè)實(shí)數(shù)根為x1≥1,另一個(gè)實(shí)數(shù)根x2≤﹣1,則拋物線y=﹣x2+2ax+2﹣a的頂點(diǎn)到x軸距離的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù).

人類會(huì)作圓并且真正了解圓的性質(zhì)是在2000多年前,由我國(guó)的墨子給出圓的概念:“一中同長(zhǎng)也.”.意思說,圓有一個(gè)圓心,圓心到圓周的長(zhǎng)都相等.這個(gè)定義比希臘數(shù)學(xué)家歐幾里得給圓下的定義要早100年.與圓有關(guān)的定理有很多,弦切角定理就是其中之一.

我們把頂點(diǎn)在圓上,一邊和圓相交,另一邊和圓相切的角叫做弦切角.

弦切角定理:弦切角的度數(shù)等于它所夾弧所對(duì)的圓周角度數(shù).

下面是弦切角定理的部分證明過程:

證明:如圖①,AB與⊙O相切于點(diǎn)A.當(dāng)圓心O在弦AC上時(shí),容易得到∠CAB90°,所以弦切角∠BAC的度數(shù)等于它所夾半圓所對(duì)的圓周角度數(shù).

如圖②,AB與⊙O相切于點(diǎn)A,當(dāng)圓心O在∠BAC的內(nèi)部時(shí),過點(diǎn)A作直徑AD交⊙O于點(diǎn)D,在上任取一點(diǎn)E,連接EC,EDEA,則∠CED=∠CAD

任務(wù):

(1)請(qǐng)按照上面的證明思路,寫出該證明的剩余部分;

(2)如圖③,AB與⊙O相切于點(diǎn)A.當(dāng)圓心O在∠BAC的外部時(shí),請(qǐng)寫出弦切角定理的證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,將繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)的位置,連接,求的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進(jìn)價(jià)之和為18元.當(dāng)銷售1千克甲種蘋果和1千克乙種蘋果利潤(rùn)分別為4元和2元時(shí),陳老師購(gòu)買3千克甲種蘋果和4千克乙種蘋果共用82元.

(1)求甲、乙兩種蘋果的進(jìn)價(jià)分別是每千克多少元?

(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價(jià)各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價(jià)提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A1,2),B1,﹣1),C2,2),拋物線yax2a0)經(jīng)過△ABC區(qū)域(包括邊界),則a的取值范圍是( 。

A.a≤﹣1a2B.a2

C.1a01aD.1a00a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】十八大以來,某校已舉辦五屆校園藝術(shù)節(jié).為了弘揚(yáng)中華優(yōu)秀傳統(tǒng)文化,每屆藝術(shù)節(jié)上都有一些班級(jí)表演經(jīng)典誦讀、民樂演奏、歌曲聯(lián)唱、民族舞蹈等節(jié)目.小穎對(duì)每屆藝術(shù)節(jié)表演這些節(jié)目的班級(jí)數(shù)進(jìn)行統(tǒng)計(jì),并繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

(1)五屆藝術(shù)節(jié)共有________個(gè)班級(jí)表演這些節(jié)日,班數(shù)的中位數(shù)為________,在扇形統(tǒng)計(jì)圖中,第四屆班級(jí)數(shù)的扇形圓心角的度數(shù)為________;

(2)補(bǔ)全折線統(tǒng)計(jì)圖;

(3)第六屆藝術(shù)節(jié),某班決定從這四項(xiàng)藝術(shù)形式中任選兩項(xiàng)表演(“經(jīng)典誦讀、民樂演奏、歌曲聯(lián)唱、民族舞蹈分別用,表示).利用樹狀圖或表格求出該班選擇兩項(xiàng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為1,∠ABC120°,E、FP分別是AB、BCAC上的動(dòng)點(diǎn),則PE+PF的最小值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案