【題目】如圖,四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD= ,CD= ,點(diǎn)P在四邊形ABCD上,若P到BD的距離為 ,則點(diǎn)P的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
【答案】B
【解析】解:過(guò)點(diǎn)A作AE⊥BD于E,過(guò)點(diǎn)C作CF⊥BD于F,
∵∠BAD=∠ADC=90°,AB=AD= ,CD= ,
∴∠ABD=∠ADB=45°,
∴∠CDF=90°﹣∠ADB=45°,
∵sin∠ABD= ,
∴AE=ABsin∠ABD=2 sin45°
=2 =2> ,
所以在AB和AD邊上有符合P到BD的距離為 的點(diǎn)2個(gè),
∵sin∠CDF= ,
∴CF=CDsin∠CDF= =1< ,
所以在邊BC和CD上沒(méi)有到BD的距離為 的點(diǎn),
總之,P到BD的距離為 的點(diǎn)有2個(gè).
故選:B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解點(diǎn)到直線的距離的相關(guān)知識(shí),掌握從直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度叫做點(diǎn)到直線的距離,以及對(duì)解直角三角形的理解,了解解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列圖形:已知a∥b,在第一個(gè)圖中,可得∠1+∠2=180°,則按照以上規(guī)律,∠1+∠2+∠P1+…+∠Pn=______度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x+m(m>0)與x軸交于點(diǎn)A(-2,0),直線y=-x+n(n>0)與x軸、y軸分別交于B、C兩點(diǎn),并與直線y=2x+m(m>0)相交于點(diǎn)D,若AB=4.
(1)求點(diǎn)D的坐標(biāo);
(2)求出四邊形AOCD的面積;
(3)若E為x軸上一點(diǎn),且△ACE為等腰三角形,直接寫出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題背景:
如圖①,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F(xiàn)分別是BC、CD上的點(diǎn),且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.
(1)小明同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是;
(2)探索延伸:
如圖②,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF= ∠BAD,上述結(jié)論是否仍然成立,請(qǐng)說(shuō)明理由;
(3)實(shí)際應(yīng)用:
如圖③,在某次軍事演習(xí)中,艦艇甲在指揮中心O北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn),2小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,當(dāng)∠EOF=70°時(shí),兩艦艇之間的距離是海里.
(4)能力提高:
如圖④,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點(diǎn)M,N在邊BC上,且∠MAN=45°.若BM=1,CN=3,則MN的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn) D,E 在△ABC的邊 BC上,連接AD,AE.下面有三個(gè)等式:①AB=AC;②AD=AE;③BD=CE.以此三個(gè)等式中的兩個(gè)作為命題的題設(shè),另一個(gè)作為命題的結(jié)論,相構(gòu)成以下三個(gè)命題:命題Ⅰ“如果①② 成立,那么③成立”; 命題Ⅱ“如果①③成立,那么②成立”;命題Ⅲ“如果②③成立,那么①成立”.
(1)以上三個(gè)命題是真命題的為__________(直接作答);
(2)請(qǐng)選擇一個(gè)真命題進(jìn)行證明(先寫出所選命題,然后證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時(shí)間后他到達(dá)點(diǎn)E,此時(shí)他仰望兩棵大樹的頂點(diǎn)A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時(shí)間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小偉和小欣玩一種抽卡片游戲:將背面完全相同、正面分別寫有1,2,3,4的四張卡片背面向上洗勻后,小偉和小欣各自隨機(jī)抽取一張(不放回).將小偉的數(shù)字作為十位數(shù)字,小欣的數(shù)字作為個(gè)位數(shù)字,組成一個(gè)兩位數(shù).如果所組成的兩位數(shù)為偶數(shù),則小偉勝;否則小欣勝.
(1)當(dāng)小偉抽取的卡片數(shù)字為2時(shí),問(wèn)兩人誰(shuí)獲勝的可能性大?
(2)通過(guò)計(jì)算判斷這個(gè)游戲?qū)πズ托⌒朗欠窆剑?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以△ABC 的邊 AB,AC 向外作等邊三角形 ABD 和等邊三角形 ACE,線段 BE 與 CD 相交于點(diǎn) O,連接 OA.
(1)求證:BE=DC;
(2)求∠BOD 的度數(shù);
(3)求證:OA 平分∠DOE.
(4)猜想線段 OA、OB、OD 的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,AB∥CD,則∠E+∠G與∠B+∠F+∠D有何關(guān)系?
(2)如圖2,若AB∥CD,又能得到什么結(jié)論?請(qǐng)直接寫出結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com