【題目】小偉和小欣玩一種抽卡片游戲:將背面完全相同、正面分別寫有1,2,3,4的四張卡片背面向上洗勻后,小偉和小欣各自隨機抽取一張(不放回).將小偉的數(shù)字作為十位數(shù)字,小欣的數(shù)字作為個位數(shù)字,組成一個兩位數(shù).如果所組成的兩位數(shù)為偶數(shù),則小偉勝;否則小欣勝.
(1)當小偉抽取的卡片數(shù)字為2時,問兩人誰獲勝的可能性大?
(2)通過計算判斷這個游戲對小偉和小欣是否公平.

【答案】
(1)解:列表得:

數(shù)字

1

2

3

4

1

﹣﹣﹣

12

13

14

2

21

﹣﹣﹣

23

24

3

31

32

﹣﹣﹣

34

4

41

42

43

﹣﹣﹣

共有3種等可能的情況數(shù),其中P(小偉勝)= ,P(小欣勝)= ,

∴小欣獲勝的可能性大.


(2)解:這個游戲對小偉和小欣是公平的.理由如下:

由(1)可知共有12種等可能結果,其中偶數(shù)占6個,奇數(shù)占6個,

∴P(小偉勝)= ,P(小欣勝)= ,

∴這個游戲對小偉和小欣是公平的.


【解析】(1)找出十位數(shù)字為2的所有等可能的情況數(shù),進而求出兩人獲勝的概率,比較即可得到結果;(2)這個游戲對小偉和小欣是公平的.根據(jù)題意,由(1)的圖表,分別計算兩人誰獲勝的可能性,比較可得答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】任何一個正整數(shù)n都可以進行這樣的分解:np×qpq是正整數(shù),且pq).如果p×qn的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×qn的最佳分解,并且規(guī)定Fn)=.例如18=1×18=2×9=3×6,這時就有F(18)=.請解答下列問題:

(1)計算:F(24);

(2)n為正整數(shù)時,求證:Fn3+2n2+n)=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對角線長分別為6和8的菱形ABCD如圖所示,點O為對角線的交點,過點O折疊菱形,使B,B′兩點重合,MN是折痕.若B'M=1,則CN的長為____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=∠ADC=90°,AB=AD= ,CD= ,點P在四邊形ABCD上,若P到BD的距離為 ,則點P的個數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形 ABC 中,∠A 的平分線交 BC 于點 D,過點 D 作 DE⊥AC, DF⊥AB,垂足分別為 E,F(xiàn),下面四個結論:

①∠AFE=∠AEF;②AD 垂直平分 EF;③;④EF 一定平行 BC. 其中正確的是(

A. ①②③ B. ②③④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,AB=AC,∠BAC=120°,D 為 BC 的中點,DE⊥AC 于點 E,AE=8,求 CE 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 已知Rt△ABC中,AC=BC,∠C=90°,DAB邊的中點,∠EDF=90°,∠EDFD點旋轉,它的兩邊分別交AC、CB(或它們的延長線)于E、F.當∠EDFD點旋轉到DEACE時(如圖1),易證當∠EDFD點旋轉到DEAC不垂直時,在圖2和圖3這兩種情況下,上述結論是否成立? 若成立,請給予證明;若不成立,,又有怎樣的數(shù)量關系?請寫出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在長方形ABCD中,AB=6厘米,BC=12厘米,點P沿AB邊從點A開始向點B以1厘米/秒的速度移動,點Q沿BC從點B開始向點C以2厘米/秒的速度移動,如果P、Q同時出發(fā),用t(秒)表示移動的時間(0≤t≤6).

(1)當PB=2厘米時,求點P移動多少秒?

(2)t為何值時,△PBQ為等腰直角三角形?

(3)求四邊形PBQD的面積,并探究一個與計算結果有關的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC三個內角的平分線交于點O,點D在CA的延長線上,且DC=BC,AD=AO,若BAC=80°,則BCA的度數(shù)為   

查看答案和解析>>

同步練習冊答案