【題目】已知一次函數(shù)yx+1與拋物線yx2+bx+cAm,9),B0,1)兩點,點C在拋物線上且橫坐標(biāo)為6

1)寫出拋物線的函數(shù)表達(dá)式;

2)判斷△ABC的形狀,并證明你的結(jié)論;

3)平面內(nèi)是否存在點Q在直線ABBC、AC距離相等,如果存在,請直接寫出所有符合條件的Q的坐標(biāo),如果不存在,說說你的理由.

【答案】1yx27x+1;(2)△ABC為直角三角形.理由見解析;(3)符合條件的Q的坐標(biāo)為(41),(24,1),(0,﹣7),(0,13).

【解析】

1)先利用一次函數(shù)解析式得到A8,9),然后利用待定系數(shù)法求拋物線解析式;

2)先利用拋物線解析式確定C6,﹣5),作AMy軸于MCNy軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA45°,∠NBC45°,AB8 ,BN6,從而得到∠ABC90°,所以△ABC為直角三角形;

3)利用勾股定理計算出AC10 ,根據(jù)直角三角形內(nèi)切圓半徑的計算公式得到RtABC的內(nèi)切圓的半徑=2 ,設(shè)△ABC的內(nèi)心為I,過AAI的垂線交直線BIP,交y軸于QAIy軸于G,如圖,則AI、BI為角平分線,BIy軸,PQ為△ABC的外角平分線,易得y軸為△ABC的外角平分線,根據(jù)角平分線的性質(zhì)可判斷點P、I、Q、G到直線AB、BC、AC距離相等,由于BI×24,則I41),接著利用待定系數(shù)法求出直線AI的解析式為y2x7,直線AP的解析式為y=﹣x+13,然后分別求出P、Q、G的坐標(biāo)即可.

1Am,9)代入yx+1m+19,解得m8,則A8,9),

A8,9),B0,1)代入yx2+bx+c,解得,

∴拋物線解析式為yx27x+1

故答案為yx27x+1;

2ABC為直角三角形.理由如下:

當(dāng)x6時,yx27x+13642+1=﹣5,則C6,﹣5),

AMy軸于M,CNy軸于N,如圖,

B01),A8,9),C6,﹣5),

BMAM8,BNCN6,

∴△ABMBNC都是等腰直角三角形,

∴∠MBA45°,∠NBC45°AB8,BN6,

∴∠ABC90°,

∴△ABC為直角三角形;

3)∵AB8,BN6

AC10,

RtABC的內(nèi)切圓的半徑=,

設(shè)ABC的內(nèi)心為I,過AAI的垂線交直線BIP,交y軸于Q,AIy軸于G,如圖,

IABC的內(nèi)心,

AIBI為角平分線,

BIy軸,

AIPQ,

PQABC的外角平分線,

易得y軸為ABC的外角平分線,

∴點IP、Q、GABC的內(nèi)角平分線或外角平分線的交點,

它們到直線ABBC、AC距離相等,

BI×24

BIy軸,

I4,1),

設(shè)直線AI的解析式為ykx+n

,解得,

∴直線AI的解析式為y2x7,

當(dāng)x0時,y2x7=﹣7,則G0,﹣7);

設(shè)直線AP的解析式為y=﹣x+p,

A89)代入得﹣4+n9,解得n13

∴直線AP的解析式為y=﹣x+13,

當(dāng)y1時,﹣x+131,則P241

當(dāng)x0時,y=﹣x+1313,則Q0,13),

綜上所述,符合條件的Q的坐標(biāo)為(4,1),(24,1),(0,﹣7),(0,13).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)興趣小組要測量摩天輪的高度.如圖,他們在C處測得摩天輪的最高點A的仰角為45°,再往摩天輪的方向前進50 mD處,測得最高點A的仰角為60°.問摩天輪的高度AB約是(  )

(結(jié)果精確到1 米,參考數(shù)據(jù):≈1.41,≈1.73)

A. 120 B. 117 C. 118 D. 119

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段AB的端點坐標(biāo)為A-2,4),B4,2),直線y=kx-2與線段AB有交點,則K的值不可能是(

A. -5B. -2C. 3D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實驗數(shù)據(jù)顯示,一般成人喝半斤低度白酒后,1.5時內(nèi)其血液中酒精含量y(毫克/百毫升)與時間(時)的關(guān)系可近似地用二次函數(shù)刻畫;1.5時后(包括1.5時)y與x可近似地用反比例函數(shù)(k>0)刻畫(如圖所示).

(1)根據(jù)上述數(shù)學(xué)模型計算:

喝酒后幾時血液中的酒精含量達(dá)到最大值?最大值為多少?

當(dāng)=5時,y=45.求k的值.

(2)按國家規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升時屬于“酒后駕駛”,不能駕車上路.參照上述數(shù)學(xué)模型,假設(shè)某駕駛員晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否駕車去上班?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在反比例函數(shù)y=(x>0)上,以OA為邊作正方形OABC,邊ABy軸于點P,若PA:PB=1:2,則正方形OABC的面積=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,AD是高,E、F分別是AB、AC的中點,

(1)AB=10,AC=8,求四邊形AEDF的周長;

(2)EFAD有怎樣的位置關(guān)系,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小宇在周日上午8:00從家出發(fā),乘車1小時到達(dá)某活動中心參加實踐活動.11:00時他在活動中心

接到爸爸的電話,因急事要求他在12:00前回到家,他即刻按照來活動中心時的路線,以5千米/時的平均速

度快步返回.同時,爸爸從家沿同一路線開車接他,在距家20千米處接上了小宇,立即保持原來的車速原

路返回.設(shè)小宇離家 x 小時后,到達(dá)離家y千米的地方,圖中折線OABCD表示 y x 之間的函數(shù)關(guān)系.下

列敘述錯誤的是( )

A. 活動中心與小宇家相距22千米

B. 小宇在活動中心活動時間為2小時

C. 他從活動中心返家時,步行用了0.4小時

D. 小宇不能在12:00前回到家

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AD>AB.

(1)作出ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);

(2)若(1)中所作的角平分線交AD于點E,AFBE,垂足為點O,交BC于點F,連接EF.求證:四邊形ABFE為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,我國海監(jiān)船在釣魚島附近的O處觀測到一可疑船正勻速直線航行我國海域,當(dāng)該可疑船位于點O的北偏東30°方向上的點A處(OA=20km)時,我方開始向?qū)Ψ胶霸,但該可疑船仍勻速航行?/span>40min后,又測得該可疑船位于點O的正北方向上的點B處,且OB=20km,求該可疑船航行的速度.

查看答案和解析>>

同步練習(xí)冊答案