【題目】如圖,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=26cm,DC=18cm ,AD=4cm,動點M以1cm/s的速度從點D向點C運動,動點N從點B以2cm/s的速度向點A運動點M、N同時出發(fā),當其中一個動點到達端點時停止運動,另一個動點也隨之停止運動,設動點運動時間為t(s),四邊形ANMD的面積y(),y關于x的函數(shù)解析式并寫出定義域_____.
【答案】y=-2t+52,0<t<13.
【解析】
要能根據(jù)函數(shù)圖象的性質和圖象上的數(shù)據(jù),分析得出函數(shù)的類型和所需要的條件,結合實際意義即可求出定義域.
解:∵在直角梯形ABCD中,DC∥AB,∠A=90,
∴四邊形ANMD也是直角梯形,因此它的面積為:(DM+AN)×AD,
∵DM=t,AN=26-2t,AD= 4;
∴四邊形AMND的面積:y=(t+26-2t)×4=-2t+52.
∵當其中一個動點到達端點停止運動時,另一個動點也隨之停止運動;
∴當N點到達A點時,2t=26,
解得:t=13;
∴自變量t的取值范圍是:0<t<13.
故答案為:0<t<13.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,點A,E,B,C不在同一條直線上.
(1)如圖1,求證:∠E+∠C﹣∠A=180°
(2)如圖2.直線FA,CP交于點P,且∠BAF=∠BAE,∠DCP=∠DCE.
①試探究∠E與∠P的數(shù)量關系;
②如圖3,延長CE交PA于點Q,若AE∥PC,∠BAQ=α(0°<α<22.5°),則∠PQC的度數(shù)為 (用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市現(xiàn)在有兩種用電收費方法:
分時電表 | 普通電表 | |
峰時(8:00~21:00) | 谷時(21:00到次日8:00) | |
電價0.55元/千瓦·時 | 電價0.35元/千瓦·時 | 電價0.52元/千瓦·時 |
小明家所在的小區(qū)用的電表都換成了分時電表.
解決問題:
(1)小明家庭某月用電總量為千瓦·時(為常數(shù));谷時用電千瓦·時,峰時用電千瓦·時,分時計價時總價為元,普通計價時總價為元,求,與用電量的函數(shù)關系式.
(2)小明家庭使用分時電表是不是一定比普通電表合算呢?
(3)下表是路皓家最近兩個月用電的收據(jù):
谷時用電(千瓦·時) | 峰時用電(千瓦·時) |
181 | 239 |
根據(jù)上表,請問用分時電表是否合算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與坐標軸交于A,B,C三點,其中C(0,3),∠BAC的平分線AE交y軸于點D,交BC于點E,過點D的直線l與射線AC,AB分別交于點M,N.
(1)直接寫出a的值、點A的坐標及拋物線的對稱軸;
(2)點P為拋物線的對稱軸上一動點,若△PAD為等腰三角形,求出點P的坐標;
(3)證明:當直線l繞點D旋轉時,均為定值,并求出該定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標為(1,2).
(1)填空:點A的坐標是 ,點B的坐標是 ;
(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′.請寫出△A′B′C′的三個頂點坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2+2x+m﹣2=0有兩個實數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。
A. 6 B. 5 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校八年級學生參加體育鍛煉的情況,隨機調查了該校部分學生每周參加體育鍛煉的時間,并進行了統(tǒng)計,繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖.
(1)本次共調查學生 人;
(2)這組數(shù)據(jù)的眾數(shù)是 ;
(3)請你將圖2的統(tǒng)計圖補充完整;
(4)若該校八年級共有650人,請根據(jù)樣本數(shù)據(jù),估計每周參加體育鍛煉時間為6小時的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1=∠2,AC=AD,要使△ABC≌△AED,還需添加一個條件,那么在①AB=AE,②BC=ED,③∠C=∠D,④∠B=∠E,這四個關系中可以選擇的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線AB交CD于點O,OE平分∠BOD,OF平分∠COB,∠AOD:∠BOE=5:2,則∠AOF等于( 。
A. 140° B. 130° C. 120° D. 110°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com