【題目】如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標(biāo)為(1,2).

1)填空:點A的坐標(biāo)是   ,點B的坐標(biāo)是   ;

2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△ABC′.請寫出△ABC′的三個頂點坐標(biāo);

3)求△ABC的面積.

【答案】1)(2,﹣1),(4,3);(2)圖詳見解析,A′(00),B′(2,4),C′(﹣1,3);(35

【解析】

1)利用點的坐標(biāo)的表示方法寫出A點和B點坐標(biāo);

2)利用點的坐標(biāo)平移規(guī)律寫出點A、BC的坐標(biāo),然后描點得到△ABC;

3)用一個矩形的面積分別減去三個三角形的面積可得到△ABC的面積.

1A2,﹣1),B4,3);

故答案為(2,﹣1),(43);

2)如圖,△ABC為所作;A0,0),B2,4),C(﹣1,3);

3)△ABC的面積=3×4×2×4×3×1×3×15

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標(biāo)為1.

(1)求k、b的值;

(2)若點Dy軸負(fù)半軸上,且滿足SCOD=SBOC,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩輛汽車分別從AB兩城同時沿高速公路駛向C城.已知A、C兩城的路程為500千米,BC兩城的路程為450千米,甲車比乙車的速度快10千米/時,結(jié)果兩輛車同時到達(dá)C城,求兩車的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是

A.袋中有形狀、大小、質(zhì)地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球

B.天氣預(yù)報“明天降水概率10%”,是指明天有10%的時間會下雨

C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎

D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點A(﹣5,0),B5,0),D2,7),連接AD,交y軸于點C

1)點C的坐標(biāo)為   ;

2)動點PB點出發(fā)以每秒1個單位的速度沿BA方向運動,同時動點QC點出發(fā),也以每秒1個單位的速度沿y軸正半軸方向運動(當(dāng)P點運動到A點時,兩點都停止運動),設(shè)從出發(fā)起運動了x秒.

請用含x的代數(shù)式分別表示P,Q兩點的坐標(biāo);

當(dāng)x2時,y軸上是否存在一點E,使得△AQE的面積與△APQ的面積相等?若存在,求E的坐標(biāo),若不存在,說明理由?

3)在(2)的條件下,在點P、Q運動過程中,過點Qx軸的平行線OF(點G、F分別位于y軸的左、右兩側(cè)),∠GQP與∠APQ的角平分線交于點M,則∠PMQ的大小會隨點P、Q的運動而變化嗎?如果不變化,請求出∠PMQ的度數(shù):若發(fā)生變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,DCAB,∠A=90°AB=26cm,DC=18cm AD=4cm,動點M1cm/s的速度從點D向點C運動,動點N從點B2cm/s的速度向點A運動點M、N同時出發(fā),當(dāng)其中一個動點到達(dá)端點時停止運動,另一個動點也隨之停止運動,設(shè)動點運動時間為t(s),四邊形ANMD的面積y(),y關(guān)于x的函數(shù)解析式并寫出定義域_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果順次連接一個四邊形各邊的中點,得到的新四邊形是矩形,則原四邊形一定是(

A.平行四邊形B.矩形

C.對角線互相垂直的四邊形D.對角線相等的四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀,再填空解題:

①方程x2﹣x﹣6=0的根是x1=3,x2=﹣2,則x1+x2=1,x1x2=﹣6;

②方程2x2﹣7x+3=0的根是x1=,x2=3,則x1+x2=,x1x2=

根據(jù)以上①②你能否猜出:

如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0,且a、b、c為常數(shù),b2﹣4ac≥0)有兩根x1、x2,那么x1+x2、x1x2與系數(shù)a、b、c有什么關(guān)系?請寫出你的猜想并說明理由.

利用公式法求出方程的根即可.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需要繞行附近的B地,已知B地位于A地的北偏東67°方向,距離A520km,C地位于B地南偏西30°方向,若要打通穿山隧道建高鐵,求線段AC的長(結(jié)果保留整數(shù))(參考數(shù)據(jù):≈1.73,sin67°≈,cos67°≈,tan67°≈

查看答案和解析>>

同步練習(xí)冊答案