【題目】如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標(biāo)為(1,2).
(1)填空:點A的坐標(biāo)是 ,點B的坐標(biāo)是 ;
(2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′.請寫出△A′B′C′的三個頂點坐標(biāo);
(3)求△ABC的面積.
【答案】(1)(2,﹣1),(4,3);(2)圖詳見解析,A′(0,0),B′(2,4),C′(﹣1,3);(3)5.
【解析】
(1)利用點的坐標(biāo)的表示方法寫出A點和B點坐標(biāo);
(2)利用點的坐標(biāo)平移規(guī)律寫出點A′、B′、C′的坐標(biāo),然后描點得到△A′B′C′;
(3)用一個矩形的面積分別減去三個三角形的面積可得到△ABC的面積.
(1)A(2,﹣1),B(4,3);
故答案為(2,﹣1),(4,3);
(2)如圖,△A′B′C′為所作;A′(0,0),B′(2,4),C′(﹣1,3);
(3)△ABC的面積=3×4﹣×2×4﹣×3×1﹣×3×1=5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標(biāo)為1.
(1)求k、b的值;
(2)若點D在y軸負(fù)半軸上,且滿足S△COD=S△BOC,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車分別從A、B兩城同時沿高速公路駛向C城.已知A、C兩城的路程為500千米,B、C兩城的路程為450千米,甲車比乙車的速度快10千米/時,結(jié)果兩輛車同時到達(dá)C城,求兩車的速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.袋中有形狀、大小、質(zhì)地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球
B.天氣預(yù)報“明天降水概率10%”,是指明天有10%的時間會下雨
C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(﹣5,0),B(5,0),D(2,7),連接AD,交y軸于點C.
(1)點C的坐標(biāo)為 ;
(2)動點P從B點出發(fā)以每秒1個單位的速度沿BA方向運動,同時動點Q從C點出發(fā),也以每秒1個單位的速度沿y軸正半軸方向運動(當(dāng)P點運動到A點時,兩點都停止運動),設(shè)從出發(fā)起運動了x秒.
①請用含x的代數(shù)式分別表示P,Q兩點的坐標(biāo);
②當(dāng)x=2時,y軸上是否存在一點E,使得△AQE的面積與△APQ的面積相等?若存在,求E的坐標(biāo),若不存在,說明理由?
(3)在(2)的條件下,在點P、Q運動過程中,過點Q作x軸的平行線OF(點G、F分別位于y軸的左、右兩側(cè)),∠GQP與∠APQ的角平分線交于點M,則∠PMQ的大小會隨點P、Q的運動而變化嗎?如果不變化,請求出∠PMQ的度數(shù):若發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=26cm,DC=18cm ,AD=4cm,動點M以1cm/s的速度從點D向點C運動,動點N從點B以2cm/s的速度向點A運動點M、N同時出發(fā),當(dāng)其中一個動點到達(dá)端點時停止運動,另一個動點也隨之停止運動,設(shè)動點運動時間為t(s),四邊形ANMD的面積y(),y關(guān)于x的函數(shù)解析式并寫出定義域_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果順次連接一個四邊形各邊的中點,得到的新四邊形是矩形,則原四邊形一定是( )
A.平行四邊形B.矩形
C.對角線互相垂直的四邊形D.對角線相等的四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀,再填空解題:
①方程x2﹣x﹣6=0的根是x1=3,x2=﹣2,則x1+x2=1,x1x2=﹣6;
②方程2x2﹣7x+3=0的根是x1=,x2=3,則x1+x2=,x1x2=.
根據(jù)以上①②你能否猜出:
如果關(guān)于x的一元二次方程ax2+bx+c=0(a≠0,且a、b、c為常數(shù),b2﹣4ac≥0)有兩根x1、x2,那么x1+x2、x1x2與系數(shù)a、b、c有什么關(guān)系?請寫出你的猜想并說明理由.
利用公式法求出方程的根即可.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需要繞行附近的B地,已知B地位于A地的北偏東67°方向,距離A地520km,C地位于B地南偏西30°方向,若要打通穿山隧道建高鐵,求線段AC的長(結(jié)果保留整數(shù))(參考數(shù)據(jù):≈1.73,sin67°≈,cos67°≈,tan67°≈ )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com