【題目】如圖,O為矩形ABCD對角線的交點(diǎn),DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AB=6,BC=8,求四邊形OCED的面積.
【答案】(1)四邊形OCED是菱形.(2)24.
【解析】
試題分析:(1)首先可根據(jù)DE∥AC、CE∥BD判定四邊形ODEC是平行四邊形,然后根據(jù)矩形的性質(zhì):矩形的對角線相等且互相平分,可得OC=OD,由此可判定四邊形OCED是菱形.
(2)連接OE,通過證四邊形BOEC是平行四邊形,得OE=BC;根據(jù)菱形的面積是對角線乘積的一半,可求得四邊形ODEC的面積.
試題解析:(1)四邊形OCED是菱形.
∵DE∥AC,CE∥BD,
∴四邊形OCED是平行四邊形,
又在矩形ABCD中,OC=OD,
∴四邊形OCED是菱形.
(2)連接OE.由菱形OCED得:CD⊥OE,
又∵BC⊥CD,
∴OE∥BC(在同一平面內(nèi),垂直于同一條直線的兩直線平行),
又∵CE∥BD,
∴四邊形BCEO是平行四邊形;
∴OE=BC=8
∴S四邊形OCED=OECD=×8×6=24.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查某市中小學(xué)生對“營養(yǎng)午餐”的滿意程度,適合采用的調(diào)查方式是 . (填“全面調(diào)查”或“抽樣調(diào)查”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形中,以為直徑作半圓,.現(xiàn)有兩動點(diǎn)、,分別從點(diǎn)、點(diǎn)同時(shí)出發(fā),點(diǎn)沿線段以/秒的速度向點(diǎn)運(yùn)動,點(diǎn)沿折線以/秒的速度向點(diǎn)運(yùn)動.當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),、同時(shí)停止運(yùn)動,設(shè)點(diǎn)運(yùn)動時(shí)間為.
(1)當(dāng)為何值時(shí),線段與平行?
(2)設(shè),當(dāng)為何值時(shí),與半圓相切?
(3)如圖2,將圖形放在直角坐標(biāo)系中,當(dāng)時(shí),設(shè)與相交于點(diǎn),雙曲線經(jīng)過點(diǎn),并且與邊交于點(diǎn),求出雙曲線的函數(shù)關(guān)系式,并直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有兩點(diǎn)A(6,0),B(0,3),如果點(diǎn)C在x軸上(C與A不重合),當(dāng)點(diǎn)C的坐標(biāo)為 時(shí),△BOC與△AOB相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A(1,﹣4),且過點(diǎn)B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)一批單價(jià)為4元的日用品.若按每件5元的價(jià)格銷售,每月能賣出300件;若按每件6元的價(jià)格銷售,每月能賣出200件,假定每月銷售件數(shù)(件)與價(jià)格(元/件)之間滿足一次函數(shù)關(guān)系.
(1)、試求與之間的函數(shù)關(guān)系式;
(2)、當(dāng)銷售價(jià)格定為多少時(shí),才能使每月的利潤最大?每月的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)﹣1,4,2,﹣2,x的眾數(shù)是2,那么這組數(shù)據(jù)的中位數(shù)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com