【題目】如圖,Rt△ABC中,∠C = 90°, P是CB邊上一動點,連接AP,作PQ⊥AP交AB于Q . 已知AC = 3cm,BC = 6cm,設(shè)PC的長度為xcm,BQ的長度為ycm .
小青同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小青同學(xué)的探究過程,請補充完整:
(1) 按照下表中自變量x的值進(jìn)行取點、畫圖、測量,分別得到了y的幾組對應(yīng)值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(說明:補全表格時,相關(guān)數(shù)據(jù)保留一位小數(shù))
m的值約為多少cm;
(2)在平面直角坐標(biāo)系中,描出以補全后的表格中各組數(shù)值所對應(yīng)的點(x ,y),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:
①當(dāng)y > 2時,寫出對應(yīng)的x的取值范圍;
②若點P不與B,C兩點重合,是否存在點P,使得BQ=BP?(直接寫結(jié)果)
【答案】(1)m的值約為2.6;(2)函數(shù)圖象見解析;(3)①當(dāng)y > 2時,對應(yīng)的x的取值范圍約是0.8< x < 3.5; ② 不存在.
【解析】
(1)按題意,認(rèn)真測量即可;
(2)利用數(shù)據(jù)描點、連線;
(3)①由根據(jù)函數(shù)圖象可得;
②根據(jù)三角形外角的性質(zhì)和三角形內(nèi)角和定理可得不存在點P,使得BQ=BP.
(1)m的值約為2.6;
(2)函數(shù)圖象
(3)①當(dāng)y > 2時,對應(yīng)的x的取值范圍約是0.8< x < 3.5;
② 不存在.
理由如下:若BQ=BP
∴∠BPQ=∠BQP
∵∠BQP=∠APQ+∠PAQ>90°
∴∠BPQ+∠BQP+∠QBP>180°與三角形內(nèi)角和為180°相矛盾.
∴不存在點P,使得BQ=BP.
故答案為不存在.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,CO的延長線交AB于點D,若BC=6,sin∠BAC=,則AC=_____,CD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx+b經(jīng)過點A(0,2),B(﹣4,0)和拋物線y=x2.
(1)求直線的解析式;
(2)將拋物線y=x2沿著x軸向右平移,平移后的拋物線對稱軸左側(cè)部分與y軸交于點C,對稱軸右側(cè)部分拋物線與直線y=kx+b交于點D,連接CD,當(dāng)CD∥x軸時,求平移后得到的拋物線的解析式;
(3)在(2)的條件下,平移后得到的拋物線的對稱軸與x軸交于點E,P為該拋物線上一動點,過點P作拋物線對稱軸的垂線,垂足為Q,是否存在這樣的點P,使以點E,P,Q為頂點的三角形與△AOB相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的3月15日是“國際消費者權(quán)益日”,許多家居商城都會利用這個契機進(jìn)行打折促銷活動.甲賣家的A商品成本為600元,在標(biāo)價1000元的基礎(chǔ)上打8折銷售.
(1)現(xiàn)在甲賣家欲繼續(xù)降價吸引買主,問最多降價多少元,才能使利潤率不低于20%?
(2)據(jù)媒體爆料,有一些賣家先提高商品價格后再降價促銷,存在欺詐行為.乙賣家也銷售A商品,其成本、標(biāo)價與甲賣家一致,以前每周可售出50件,現(xiàn)乙賣家先將標(biāo)價提高2m%,再大幅降價24m元,使得A商品在3月15日那一天賣出的數(shù)量就比原來一周賣出的數(shù)量增加了 m%,這樣一天的利潤達(dá)到了20000元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=120°,點A,B分別在OM,ON上,且OA=OB=,將射線OM繞點O逆時針旋轉(zhuǎn)得到OM′,旋轉(zhuǎn)角為α(且),作點A關(guān)于直線OM′的對稱點C,畫直線BC交于OM′與點D,連接AC,AD.有下列結(jié)論:
有下列結(jié)論:
①∠BDO + ∠ACD = 90°;
②∠ACB 的大小不會隨著的變化而變化;
③當(dāng) 時,四邊形OADC為正方形;
④面積的最大值為.
其中正確的是________________.(把你認(rèn)為正確結(jié)論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。
A. 主視圖不變,左視圖不變
B. 左視圖改變,俯視圖改變
C. 主視圖改變,俯視圖改變
D. 俯視圖不變,左視圖改變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點從點出發(fā),沿著矩形的邊順時針方向運動一周回到點,則點圍成的圖形面積與點運動路程之間形成的函數(shù)關(guān)系式的大致圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知二次函數(shù)(為常數(shù),)的圖象過點和點,函數(shù)圖象最低點的縱坐標(biāo)為.直線的解析式為
求二次函數(shù)的解析式;
直線沿軸向右平移,得直線,與線段相交于點,與軸下方的拋物線相交于點,過點作軸于點,把沿直線折疊,當(dāng)點恰好落在拋物線上點時(圖求直線的解析式;
在的條件下,與軸交于點,把繞點逆時針旋轉(zhuǎn)得到,P為上的動點,當(dāng)為等腰三角形時,求符合條件的點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成圖1的條形統(tǒng)計圖和圖2扇形統(tǒng)計圖,但均不完整.請你根據(jù)統(tǒng)計圖解答下列問題:
(1)求參加比賽的學(xué)生共有多少名?并補全圖1的條形統(tǒng)計圖.
(2)在圖2扇形統(tǒng)計圖中,m的值為_____,表示“D等級”的扇形的圓心角為_____度;
(3)組委會決定從本次比賽獲得A等級的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com