【題目】已知:如圖,在,,,邊上的中點(diǎn),繞點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為得到,的兩邊分別與邊相交于點(diǎn),兩點(diǎn),連結(jié).

(1)求證:;

(2)的度數(shù);

(3)當(dāng)變成等腰直角三角形時(shí),的長(zhǎng);

(4)在此運(yùn)動(dòng)變化的過(guò)程中,四邊形的面積是否保持不變?試說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2);(304;(4)不變,理由見(jiàn)解析.

【解析】

1)結(jié)合等腰三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)利用ASA可得;

2)由全等三角形的性質(zhì)可得,可知,可求度數(shù);

3)考慮點(diǎn)E與點(diǎn)C重合和點(diǎn)的中點(diǎn)的情況即可;

(4)根據(jù)計(jì)算即可.

1

,

,邊上的中點(diǎn),

也是頂角的角平分線,

也是底邊邊上的高線(等腰三角形三線合一)

,,

2(已證)

(全等三角形對(duì)應(yīng)邊相等)

(3)點(diǎn)重合時(shí),即時(shí),會(huì)成等腰直角三角形.

點(diǎn)的中點(diǎn)時(shí),即時(shí),會(huì)成等腰直角三角形.

(4)在此運(yùn)動(dòng)變化的過(guò)程中,四邊形的面積保持不變.

理由如下:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD中,∠MAN=45°,連接BDAM,AN分別交于E,F(xiàn)點(diǎn),則下列結(jié)論正確的有_____

①M(fèi)N=BM+DN

②△CMN的周長(zhǎng)等于正方形ABCD的邊長(zhǎng)的兩倍;

③EF2=BE2+DF2;

點(diǎn)AMN的距離等于正方形的邊長(zhǎng)

⑤△AEN、△AFM都為等腰直角三角形.

⑥SAMN=2SAEF

⑦S正方形ABCD:SAMN=2AB:MN

設(shè)AB=a,MN=b,則≥2﹣2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,平分點(diǎn).

1)如圖①,若點(diǎn),,求的度數(shù);

2)如圖②,若點(diǎn),求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,我省在修建泛亞鐵路時(shí)遇到一座山,要從地向地修一條隧道(,在同一水平面上),為了測(cè)量,兩地之間的距離,某工程師乘坐熱氣球從地出發(fā)垂直上升米到達(dá)處,在處觀察地的俯角為,然后保持同一高度向前平移米到達(dá)處,在處觀察地的俯角為,則兩地之間的距離為多少米?(參考數(shù)據(jù):;結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知m,nm<n)是關(guān)于x的方程(xa)(xb)=2的兩根,若a<b,則下列判斷正確的是

A. a<m<b<n B. m<a<n<b

C. a<m<n<d D. m<a<b<n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10分)

如圖,臺(tái)風(fēng)中心位于點(diǎn)P,并沿東北方向PQ移動(dòng),已知臺(tái)風(fēng)移動(dòng)的速度為30千米/時(shí),受影響區(qū)域的半徑為200千米B市位于點(diǎn)P的北偏東75°方向上,距離點(diǎn)P 320千米處.

(1) 說(shuō)明本次臺(tái)風(fēng)會(huì)影響B市;

2求這次臺(tái)風(fēng)影響B市的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,小黃站在河岸上的點(diǎn),看見(jiàn)河里有一小船沿垂直于岸邊的方向劃過(guò)來(lái).此時(shí),測(cè)得小船的俯角是,若小黃的眼睛與地面的距離米,米,平行于所在的直線,迎水坡的坡度為,坡長(zhǎng)米,則此時(shí)小船到岸邊的距離的長(zhǎng)為( )米.(,結(jié)果保留兩位有效數(shù)字)

A. 11 B. 8.5 C. 7.2 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,0),以線段OA為邊在第四象限內(nèi)作等邊△ABC,點(diǎn)C為x軸正半軸上一動(dòng)點(diǎn)(OC>10,連接BC,以線段BC為邊在第四象限內(nèi)作等邊△CBD,直線DA交y軸于點(diǎn)E.下列結(jié)論正確的有( )個(gè)

(1)OBC≌△ABD;(2)點(diǎn)E的位置不隨著點(diǎn)C位置的變化而變化,點(diǎn)E的坐標(biāo)是(0,) (3)DAC的度數(shù)隨著點(diǎn)C位置的變化而改變;(4)當(dāng)點(diǎn)C的坐標(biāo)為(m0)(m1)時(shí),四邊形ABDC的面積Sm的函數(shù)關(guān)系式為.

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線BD經(jīng)過(guò)坐標(biāo)原點(diǎn),矩形的邊分別平行于坐標(biāo)軸,點(diǎn)C在反比例函數(shù)的圖象上.若點(diǎn)A的坐標(biāo)為(-2,-2),則k的值為 。

查看答案和解析>>

同步練習(xí)冊(cè)答案