【題目】如圖,小黃站在河岸上的點(diǎn),看見河里有一小船沿垂直于岸邊的方向劃過來.此時(shí),測得小船的俯角是,若小黃的眼睛與地面的距離是米,米,平行于所在的直線,迎水坡的坡度為,坡長米,則此時(shí)小船到岸邊的距離的長為( )米.(,結(jié)果保留兩位有效數(shù)字)
A. 11 B. 8.5 C. 7.2 D. 10
【答案】D
【解析】
把AB和CD都整理為直角三角形的斜邊,利用坡度和勾股定理易得點(diǎn)B和點(diǎn)D到CA的距離,進(jìn)而利用俯角的正切值可求得CH長度.CH﹣AE=EH即為AC長度.
過點(diǎn)B作BE⊥AC于點(diǎn)E,延長DG交CA于點(diǎn)H,得Rt△ABE和矩形BEHG.
∵i==,設(shè)BE=4x,則AE=3x,AB=5x.
∵AB=10.5,∴x=2.1,∴BE=8.4,AE=6.3.
∵DG=1.6,BG=0.7,∴DH=DG+GH=1.6+8.4=10,AH=AE+EH=6.3+0.7=7.
在Rt△CDH中,∵∠C=∠FDC=30°,DH=10,tan30°==,∴CH≈17.
又∵CH=CA+7,即17=CA+7,∴CA=17﹣7=10(米).
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=(x-1)2-1.
(1)該拋物線的對(duì)稱軸是______________,頂點(diǎn)坐標(biāo)為____________;
(2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并在圖中的直角坐標(biāo)系內(nèi)描點(diǎn)畫出該拋物線;
x | … | … | |||||
y | … | … |
(3)根據(jù)圖象,直接寫出當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題探究:如圖①,在四邊形ABCD中,AB∥CD,E是BC的中點(diǎn),AE是∠BAD的平分線,則線段AB,AD,DC之間的等量關(guān)系為 ;
(2)方法遷移:如圖②,在四邊形ABCD中,AB∥CD,AF與DC的延長線交于點(diǎn)F,E是BC的中點(diǎn),AE是∠BAF的平分線,試探究線段AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論;
(3)聯(lián)想拓展:如圖③,AB∥CF,E是BC的中點(diǎn),點(diǎn)D在線段AE上,∠EDF=∠BAE,試探究線段AB,DF,CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,,是邊上的中點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為得到,的兩邊分別與、邊相交于點(diǎn),兩點(diǎn),連結(jié).
(1)求證:;
(2)求的度數(shù);
(3)當(dāng)變成等腰直角三角形時(shí),求的長;
(4)在此運(yùn)動(dòng)變化的過程中,四邊形的面積是否保持不變?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系的原點(diǎn)是正方形的中心,頂點(diǎn),的坐標(biāo)分別為、,把正方形繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)得到正方形,則正方形與正方形重疊部分形成的正八邊形的邊長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊長(3a+b)米,寬(2a+b)米的長方形廣場,園林部門要對(duì)陰影區(qū)城進(jìn)行綠化,空白區(qū)城進(jìn)行廣場硬化,陰影部分是邊長為(a+b)米的正方形.
(1)計(jì)算廣場上需要硬化部分的面積;
(2)若a=30,b=10,求硬化部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=30°.過點(diǎn)B作DB⊥AB交CA的延長線于點(diǎn)D,過點(diǎn)C作CE⊥AC交BA的延長線于點(diǎn)E,點(diǎn)F為AE的中點(diǎn),連接CF.
(1)求證:△DBA≌△ECA;
(2)△CAF是等邊三角形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于a、b定義兩種新運(yùn)算“*”和“⊕”:a*b=a+kb,a⊕b=ka+b(其中k為常數(shù),且k≠0),若平面直角坐標(biāo)系xOy中的點(diǎn)P(a,b),有點(diǎn)P′的坐標(biāo)為(a*b,a⊕b)與之相對(duì)應(yīng),則稱點(diǎn)P′為點(diǎn)P的“k衍生點(diǎn)”.例如:P(1,4)的“2衍生點(diǎn)”為P′(1+2×4,2×1+4),即P′(9,6).
(1)點(diǎn)P(﹣1,6)的“2衍生點(diǎn)”P′的坐標(biāo)為 ;
(2)若點(diǎn)P的“5衍生點(diǎn)”P′的坐標(biāo)為(﹣3,9),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過點(diǎn)B作⊙O的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連接AE并延長交BD于點(diǎn)F,直線CF交AB的延長線于G.
(1)求證:AEFD=AFEC;
(2)求證:FC=FB;
(3)若FB=FE=2,求⊙O的半徑r的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com