【題目】如圖,在△AOB中,∠AOB=90°,OA=6,OB=8,動點(diǎn)Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長度/秒的速度勻速運(yùn)動,同時(shí)動點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長度/秒的速度勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒(0<t≤5),以P為圓心,PA長為半徑的⊙P與AB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、CQ.
⑴ 當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí),求t的值;
⑵ 若△ACQ是等腰三角形,求t的值;
⑶ 若⊙P與線段QC只有一個(gè)公共點(diǎn),求t的取值范圍.
【答案】(1) ;(2) 或者或者.;(3) 或者
【解析】
(1)點(diǎn)Q與點(diǎn)D重合時(shí),先證明 ,得到 ,利用平行線分線段成比例,找出AD的長,利用OQ+DA=OA,求出t的值.
(2)分三種情況進(jìn)行討論,AQ=AC;QC=CA;QC=QA,利用等腰三角形性質(zhì)和三角形相似求出.
(3)一個(gè)交點(diǎn),分情況討論,當(dāng)圓P與QC相切的時(shí)候,以及點(diǎn)Q與D重合的時(shí)候進(jìn)行討論,便可找出t的取值范圍.
解: CA是直徑,∠AOB=90°.
.
在△AOB中,∠AOB=90°,OA=6,OB=8中.
.
即 .
當(dāng)秒時(shí),點(diǎn)Q與點(diǎn)D重合.
(2)若△ACQ是等腰三角形時(shí),分三種情況討論.
①當(dāng)AQ=AC時(shí),即AC=AQ=2t,OQ=t.
即:.
②當(dāng)QC=CA時(shí),即QC=CA=2t,由(1)知.
即: .
③當(dāng)QC=QA時(shí),過點(diǎn)Q作,則AE=t,AQ=6-t
∽.
.
即: .
綜上所述,當(dāng)△ACQ是等腰三角形時(shí),或者或者.
(3)當(dāng)QC與圓P相切時(shí), .
.
.
∽
即: .
解得:
當(dāng) 時(shí),圓P與QC只有一個(gè)交點(diǎn).
當(dāng) 時(shí),由(1)知: .
當(dāng) 時(shí),圓P與QC只有一個(gè)交點(diǎn).
故:當(dāng)圓P與QC只有 一個(gè)交點(diǎn)時(shí),t的范圍:或者.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折線中,,,將折線繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),得到折線,點(diǎn)的對應(yīng)點(diǎn)落在線段上的點(diǎn)處,點(diǎn)的對應(yīng)點(diǎn)落在點(diǎn)處,連接,若,則_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.
(1)求此反比例函數(shù)的表達(dá)式;
(2)若點(diǎn)P在x軸上,且S△ACP=S△BOC,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“新冠肺炎”肆虐時(shí),無數(shù)抗疫英雄涌現(xiàn),七年級(2)班老師為讓同學(xué)們更深人地了解抗疫英雄鐘南山、李蘭娟、李文亮、張文宏(依次記為A、B、C、D)的事跡,設(shè)計(jì)了如下活動:取四張完全相同的卡片.分別寫上A、B、C、D)四個(gè)標(biāo)號,然后背面朝上放置在水平桌面上,攪勻后每個(gè)同學(xué)從中隨機(jī)抽取一張卡片,記下標(biāo)號后放回,老師要求每位同學(xué)依據(jù)抽到的卡片上的標(biāo)號查找相對應(yīng)抗疫英雄的資料,并做成小報(bào).
(1)求小歡同學(xué)抽到的卡片上是鐘南山的概率;
(2)請用列表法或畫樹狀圖的方法,求小平和小安兩位同學(xué)抽到的卡片上是不同英雄的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生的安全意識情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)這次調(diào)查一共抽取了 名學(xué)生,其中安全意識為“很強(qiáng)”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是 ;
(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校有1800名學(xué)生,現(xiàn)要對安全意識為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,估計(jì)全校需要強(qiáng)化安全教育的學(xué)生約有 名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,以為直徑的與相交于點(diǎn)E,連接CE.
(1)求證:;
(2)如果的面積為3,求的面積;
(3)如圖的角平分線BD交AC于點(diǎn)D,于點(diǎn)交于點(diǎn)F,連接,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在3×3正方形方格中,有3個(gè)小正方形涂成了黑色,所形成的圖案如圖所示,圖中每塊小正方形除顏色外完全相同.
(1)一個(gè)小球在這個(gè)正方形方格上自由滾動,那么小球停在黑色小正方形的概率是多少?
(2)現(xiàn)將方格內(nèi)空白的小正方形(A、B、C、D、E、F)中任取2個(gè)涂黑,得到新圖案,請用列表或畫樹狀圖的方法求新圖案是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河旁有一座小山,從山頂A處測得河對岸點(diǎn)C的俯角為30°,測得岸邊點(diǎn)D的俯角為45°,現(xiàn)從山頂A到河對岸點(diǎn)C拉一條筆直的纜繩AC,如果AC是120米,求河寬CD的長?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com