【題目】如圖,在3×3正方形方格中,有3個(gè)小正方形涂成了黑色,所形成的圖案如圖所示,圖中每塊小正方形除顏色外完全相同.

1)一個(gè)小球在這個(gè)正方形方格上自由滾動(dòng),那么小球停在黑色小正方形的概率是多少?

2)現(xiàn)將方格內(nèi)空白的小正方形(A、B、CD、E、F)中任取2個(gè)涂黑,得到新圖案,請(qǐng)用列表或畫樹狀圖的方法求新圖案是中心對(duì)稱圖形的概率.

【答案】1)小球停在黑色小正方形的概率是;(2)新圖案是中心對(duì)稱圖形的概率是

【解析】

1)根據(jù)題意和圖形,可以求得小球停在黑色小正方形的概率;

2)根據(jù)題意可以畫出相應(yīng)的表格,從而可以求得相應(yīng)的概率.

解:(1)由題意可得,

小球停在黑色小正方形的概率是,

即小球停在黑色小正方形的概率是;

2

共有30種等可能結(jié)果,中心對(duì)稱的情況是:(BE)、(CD)、(AF),(EB),(DC),(FA),

則新圖案是中心對(duì)稱圖形的概率是:

即新圖案是中心對(duì)稱圖形的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的對(duì)稱軸是軸,過點(diǎn)作一直線與拋物線相交于,兩點(diǎn),過點(diǎn)軸的垂線與直線相交于點(diǎn)

1)求拋物線的解析式;

2)判斷點(diǎn)是否在直線上,并說明理由;

3)若直線與拋物線有且只有一個(gè)公共點(diǎn),且與拋物線的對(duì)稱軸不平行,則稱該直線與拋物線相切.過拋物線上的任意一點(diǎn)(除頂點(diǎn)外)作該拋物線的切線,分別交直線和直線于點(diǎn),,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在AOB中,AOB90°OA6,OB8,動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿著OA方向以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著AB方向也以1個(gè)單位長度/秒的速度勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒(0t≤5),以P為圓心,PA長為半徑的PAB、OA的另一個(gè)交點(diǎn)分別為C、D,連結(jié)CD、CQ

當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí),求t的值;

ACQ是等腰三角形,求t的值;

P與線段QC只有一個(gè)公共點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一種正方形的紙片沿著過一邊中點(diǎn)的虛線剪成形狀分別為三角形和梯形的兩部分,利用這兩部分不能拼成的圖形是(  )

A.直角三角形B.平行四邊形C.菱形D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C.點(diǎn)P是該函數(shù)圖象上的動(dòng)點(diǎn),且位于第一象限,設(shè)點(diǎn)P的橫坐標(biāo)為x

1)寫出線段AC, BC的長度:AC= ,BC=

2)記BCP的面積為S,求S關(guān)于x的函數(shù)表達(dá)式;

3)過點(diǎn)PPHBC,垂足為H,連結(jié)AH,AP,設(shè)APBC交于點(diǎn)K,探究:是否存在四邊形ACPH為平行四邊形?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說明理由,并求出的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,的直徑,過點(diǎn)作弦垂直于直徑,點(diǎn)恰好為的中點(diǎn),連接,

1)求證:;

2)若,求的半徑;

3)在(2)的條件下,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】截至北京時(shí)間202032214時(shí)30分,全球新冠肺炎確診病例達(dá)305740例,超過30萬,死亡病例累計(jì)12762人,將“305740”這個(gè)數(shù)字用科學(xué)記數(shù)法表示保留兩位有效數(shù)字為(  )

A.3.05740×105B.3.05×105C.3.0×105D.3.1×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+ca≠0)與x軸交于點(diǎn)A(﹣1,0),B4,0),與y軸交于點(diǎn)C0,2).

1)求拋物線的解析式;

2)如圖1,點(diǎn)D的坐標(biāo)為(2,0),點(diǎn)P是該拋物線第一象限上的一個(gè)動(dòng)點(diǎn),連接DPBC于點(diǎn)E.當(dāng)BDE是等腰三角形時(shí),直接寫出此時(shí)點(diǎn)E的坐標(biāo);

3)如圖2,點(diǎn)Mm,n)是拋物線上位于對(duì)稱軸的左側(cè)且不在坐標(biāo)軸上的動(dòng)點(diǎn),過點(diǎn)Mx軸的平行線交y軸于點(diǎn)Q,交拋物線于另一點(diǎn)E,直線BMy軸于點(diǎn)F,當(dāng)SMFQSMEB13時(shí),求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案