【題目】如圖,△ABC中,∠ACB=72°,將△ABC繞點(diǎn)B按逆時針方向旋轉(zhuǎn)得到△BDE(點(diǎn)D與點(diǎn) A是對應(yīng)點(diǎn),點(diǎn)E與點(diǎn)C是對應(yīng)點(diǎn)),且邊DE恰好經(jīng)過點(diǎn)C,則∠ABD的度數(shù)為
A. 36° B. 40° C. 45° D. 50°
【答案】A
【解析】先根據(jù)旋轉(zhuǎn)的性質(zhì)可知BE=BC,∠BED=∠ACB=72°,∠ABC=∠EBD,再根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和的性質(zhì)可求得∠EBC= 36°,從而得出∠ABD=36°.
∵△ABC繞點(diǎn)B按逆時針方向旋轉(zhuǎn)得到△BDE(點(diǎn)D與點(diǎn) A是對應(yīng)點(diǎn),點(diǎn)E與點(diǎn)C是對應(yīng)點(diǎn)),
∴BE=BC,∠BED=∠ACB=72°∠ABC=∠EBD.
∴∠ABC-∠DBC =∠EBD-∠DBC.
即:∠ABD=∠EBC。
∵BE=BC,
∴∠BCE=∠BEC=72°.
在△BCE中,∠BCE+∠BEC+∠CBE=180°,
∴∠CBE=36°,
∴∠ABD=∠EBC=36°.
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點(diǎn),P為AB延長線上一點(diǎn),且PC=PE.
(1)求AC、AD的長;
(2)試判斷直線PC與⊙O的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形中,,動點(diǎn)從點(diǎn)出發(fā),以2cm/s的速度沿向終點(diǎn)勻速運(yùn)動,連接,以為直徑作⊙分別交于點(diǎn),連接.設(shè)運(yùn)動時間為s .
(1)如圖①,若點(diǎn)為的中點(diǎn),求證:;
(2)如圖②,若⊙與相切于點(diǎn),求的值;
(3)若是以為腰的等腰三角形,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)A(0,8)、點(diǎn)B(2,a)在直線y=﹣2x+b上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)B.
(1)求a和k的值;
(2)將線段AB向右平移m個單位長度(m>0),得到對應(yīng)線段CD,連接AC、BD.
①如圖2,當(dāng)m=3時,過D作DF⊥x軸于點(diǎn)F,交反比例函數(shù)圖象于點(diǎn)E,求E點(diǎn)的坐標(biāo);
②在線段AB運(yùn)動過程中,連接BC,若△BCD是等腰三形,求所有滿足條件的m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個箱子中有三個分別標(biāo)有數(shù)字1,2,3的材質(zhì)、大小都相同的小球,從中任意摸出一個小球,記下小球的數(shù)字x后,放回箱中并搖勻,再摸出一個小球,又記下小球的數(shù)字y。以先后記下的兩個數(shù)字(x,y)作為點(diǎn)P的坐標(biāo)。
(1)求點(diǎn)P的橫坐標(biāo)與縱坐標(biāo)的和為4的概率,并畫出樹狀圖或列表;
(2)求點(diǎn)P落在以坐標(biāo)原點(diǎn)為圓心、為半徑的圓的內(nèi)部的概率。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(x0,y0)和直線y=kx+b,則點(diǎn)P到直線y=kx+b的距離d可用公式d=計算.
例如:求點(diǎn)P(﹣2,1)到直線y=x+1的距離.
解:因?yàn)橹本y=x+1可變形為x﹣y+1=0,其中k=1,b=1.
所以點(diǎn)P(﹣2,1)到直線y=x+1的距離為d====.
根據(jù)以上材料,求:
(1)點(diǎn)P(2,4)到直線y=3x﹣2的距離,并說明點(diǎn)P與直線的位置關(guān)系;
(2)點(diǎn)P(2,1)到直線y=2x﹣1的距離;
(3)已知直線y=﹣3x+1與y=﹣3x+3平行,求這兩條直線的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=mx(m為常數(shù))與雙曲線y=(k為常數(shù))相交于A、B兩點(diǎn).
(1)若點(diǎn)A的橫坐標(biāo)為3,點(diǎn)B的縱坐標(biāo)為﹣4.直接寫出:k= ,m= ,mx>的解集為 .
(2)若雙曲線y=(k為常數(shù))的圖象上有點(diǎn)C(x1,y1),D(x2,y2),當(dāng)x1<x2時,比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某場足球比賽中,球員甲從球門底部中心點(diǎn)的正前方處起腳射門,足球沿拋物線飛向球門中心線;當(dāng)足球飛離地面高度為時達(dá)到最高點(diǎn),此時足球飛行的水平距離為.已知球門的橫梁高為.
在如圖所示的平面直角坐標(biāo)系中,問此飛行足球能否進(jìn)球門?(不計其它情況)
守門員乙站在距離球門處,他跳起時手的最大摸高為,他能阻止球員甲的此次射門嗎?如果不能,他至少后退多遠(yuǎn)才能阻止球員甲的射門?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行羽毛球比賽,把球看成點(diǎn),其飛行的路線為拋物線的一部分.如圖建立平面直角坐標(biāo)系,甲在O點(diǎn)正上方1m的P處發(fā)球,羽毛球飛行的高度y(m)與羽毛球距離甲站立位置(點(diǎn)O)的水平距離x(m)之間滿足函敗表達(dá)式y=a(x﹣4)2+h.已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m,球場邊界距點(diǎn)O的水平距離為10m.
(1)當(dāng)a=﹣時,求h的值,并通過計算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,乙在另一側(cè)距球網(wǎng)水平距離lm處起跳扣球沒有成功,球在距球網(wǎng)水平距離lm,離地面高度2.2m處飛過,通過計算判斷此球會不會出界?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com