【題目】如圖1,點(diǎn)A(0,8)、點(diǎn)B(2,a)在直線y=﹣2x+b上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點(diǎn)B.
(1)求a和k的值;
(2)將線段AB向右平移m個(gè)單位長度(m>0),得到對應(yīng)線段CD,連接AC、BD.
①如圖2,當(dāng)m=3時(shí),過D作DF⊥x軸于點(diǎn)F,交反比例函數(shù)圖象于點(diǎn)E,求E點(diǎn)的坐標(biāo);
②在線段AB運(yùn)動(dòng)過程中,連接BC,若△BCD是等腰三形,求所有滿足條件的m的值.
【答案】(1)a=4,k=8;(2)①E(5,);②滿足條件的m的值為4或5或2.
【解析】
(1)把點(diǎn)A坐標(biāo)代入直線AB的解析式中,求出a,求出點(diǎn)B坐標(biāo),再將點(diǎn)B坐標(biāo)代入反比例函數(shù)解析式中求出k;
(2)①確定出點(diǎn)D(5,4),得到求出點(diǎn)E坐標(biāo);
②先表示出點(diǎn)C,D坐標(biāo),再分三種情況:當(dāng)BC=CD時(shí),判斷出點(diǎn)B在AC的垂直平分線上,即可得出結(jié)論,當(dāng)BC=BD時(shí),表示出BC,用BC=BD建立方程求解即可得出結(jié)論,當(dāng)BD=AB時(shí),m=AB,根據(jù)勾股定理計(jì)算即可.
解:(1)∵點(diǎn)A(0,8)在直線y=﹣2x+b上,
∴﹣2×0+b=8,
∴b=8,
∴直線AB的解析式為y=﹣2x+8,
將點(diǎn)B(2,a)代入直線AB的解析式y=﹣2x+8中,得﹣2×2+8=a,
∴a=4,
∴B(2,4),
將B(2,4)代入反比例函數(shù)解析式y=(x>0)中,得k=xy=2×4=8;
(2)①由(1)知,B(2,4),k=8,∴反比例函數(shù)解析式為y=,
當(dāng)m=3時(shí),將線段AB向右平移3個(gè)單位長度,得到對應(yīng)線段CD,
∴D(2+3,4),即D(5,4),
∵DF⊥x軸于點(diǎn)F,交反比例函數(shù)y=的圖象于點(diǎn)E,
∴E(5,);
②如圖,
∵將線段AB向右平移m個(gè)單位長度(m>0),得到對應(yīng)線段CD,
∴CD=AB,AC=BD=m,
∵A(0,8),B(2,4),
∴C(m,8),D((m+2,4),
△BCD是等腰三形,
當(dāng)BC=CD時(shí),BC=AB,
∴點(diǎn)B在線段AC的垂直平分線上,
∴m=2×2=4,
當(dāng)BC=BD時(shí),B(2,4),C(m,8),
∴,
∴,
∴m=5,
當(dāng)BD=AB時(shí),,
綜上所述,△BCD是以BC為腰的等腰三角形,滿足條件的m的值為4或5或2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點(diǎn)C落在Q處,點(diǎn)D落在AB邊上E處,EQ與BC相交于F,若AD=8 cm,AB=6 cm,AE=4cm,則△EBF的周長是______________ cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系中,三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,4),B(2,2),C(4,6)(正方形網(wǎng)格中,每個(gè)小正方形的邊長均為1).
(1)畫出△ABC向下平移5個(gè)單位長度得到的△A1B1C1,并寫出點(diǎn)B1的坐標(biāo);
(2)以點(diǎn)O為位似中心,在第三象限內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且相似比為1:2,直接寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以點(diǎn)O為圓心的兩個(gè)同心圓中,大圓的弦AB交小圓于點(diǎn)C、D.
(1)求證AC=BD;
(2)若AC=3,大圓和小圓的半徑分別為6和4,則CD的長度是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E在AD上,且BE=BC.
(1)EC平分∠BED嗎?證明你的結(jié)論.
(2)若AB=1,∠ABE=45°,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA、OC分別在x軸、y軸的正半軸上,OA=4,OC=2.點(diǎn)P從點(diǎn)O出發(fā),沿x軸以每秒1個(gè)單位長的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段CP的中點(diǎn)繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)90°得點(diǎn)D,點(diǎn)D隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接DP、DA.
(1)當(dāng)t=2時(shí),點(diǎn)D的坐標(biāo)是 ;
(2)請用含t的代數(shù)式表示出點(diǎn)D的坐標(biāo) ;
(3)在點(diǎn)P從O向A運(yùn)動(dòng)的過程中,△DPA能否成為直角三角形?若能,求t的值.若不能,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=72°,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)得到△BDE(點(diǎn)D與點(diǎn) A是對應(yīng)點(diǎn),點(diǎn)E與點(diǎn)C是對應(yīng)點(diǎn)),且邊DE恰好經(jīng)過點(diǎn)C,則∠ABD的度數(shù)為
A. 36° B. 40° C. 45° D. 50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴(kuò)大銷售、增加盈利盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場平均每天可多售出4件,若商場平均每天盈利2100元,每件襯衫應(yīng)降價(jià)多少元?請完成下列問題:
(1)未降價(jià)之前,某商場襯衫的總盈利為 元.
(2)降價(jià)后,設(shè)某商場每件襯衫應(yīng)降價(jià)x元,則每件襯衫盈利 元,平均每天可售出 件(用含x的代數(shù)式進(jìn)行表示)
(3)請列出方程,求出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦EF⊥AB于點(diǎn)C,過點(diǎn)F作⊙O的切線交AB的延長線于點(diǎn)D.
(1)已知∠A=α,求∠D的大小(用含α的式子表示);
(2)取BE的中點(diǎn)M,連接MF,請補(bǔ)全圖形;若∠A=30°,MF=,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com