【題目】已知:直線 AB,CD 相交于點 O,且OE CD ,如圖.
(1)過點 O 作直線 MN AB;
(2)若點 F 是(1)中所畫直線 MN 上任意一點(O 點除外),且AOC 35°,求EOF的度數(shù);
(3)若BOD:DOA 1:5,求AOE 的度數(shù).
【答案】(1)見解析(2)35°或145°(3)120°
【解析】
(1)根據(jù)垂直的定義即可作圖;
(2)分F在射線OM上和在射線ON上分別進行求解即可;
(3)依據(jù)平角的定義以及垂線的定義,即可得到∠AOE的度數(shù).
(1)如圖,MN為所求;
(2)若F在射線OM上,
∵MN AB,OE CD ,
∴∠AOC+∠COM=90°,∠EOF+∠COM =90°,
則∠EOF=∠AOC=35°;
若F'在射線ON上,
∵MN AB,OE CD ,
∴∠DON=∠COM=90°-∠AOC=55°,∠EOD=90°
則∠EOF'=∠DOE+∠DON=145°;
綜上所述,∠EOF的度數(shù)為35°或145°;
(3)∵BOD:DOA 1:5
∴∠BOD:∠BOC=1:5,
∴∠BOD=∠COD=30°,
∴∠AOC=30°,
又∵EO⊥CD,
∴∠COE=90°,
∴∠AOE=90°+30°=120°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑, BM切⊙O于點B,點P是⊙O上的一個動點(不經(jīng)過A,B兩點),過O作OQ∥AP交于點Q,過點P作于C,交的延長線于點E,連結(jié).
(1)求證:PQ與⊙O相切;
(2)若直徑AB的長為12,PC=2EC,求tan∠E的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,將腰CD以D為中心逆時針旋轉(zhuǎn)90°至ED,連AE、CE,則△ADE的面積是( 。
A. 1 B. 2 C. 3 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為慶祝建國七十周年,南崗區(qū)準備對某道路工程進行改造,若請甲工程隊單獨做此工程需4個月完成,若請乙工程隊單獨做此工程需6個月完成,若甲、乙兩隊合作2個月后,甲工程隊到期撤離,則乙工程隊再單獨需幾個月能完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為4的正方形AOCD的頂點A、C分別在y軸和x軸上,點P的坐標為(2,0),以點P為圓心,OP的長為半徑向正方形內(nèi)部作一半圓,交線段DF于點F,線段DF的延長線交y軸于點E,DF=DC.
(1)求證:DF是半圓P的切線;
(2)求線段DF所在直線的解析式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】右圖是老北京城一些地點的分布示意圖.在圖中,分別以正東、正北方向為軸、軸的正方向建立平面直角坐標系,有如下四個結(jié)論:
①當(dāng)表示天安門的點的坐標為(0,0),表示廣安門的點的坐標為(,)時,表示左安門的點的坐標為(5,);
②當(dāng)表示天安門的點的坐標為(0,0),表示廣安門的點的坐標為(,)時,表示左安門的點的坐標為(10,);
③當(dāng)表示天安門的點的坐標為(1,1),表示廣安門的點的坐標為(,)時,表示左安門的點的坐標為(,);
④當(dāng)表示天安門的點的坐標為(,),表示廣安門的點的坐標為(,)時,表示左安門的點的坐標為(,).
上述結(jié)論中,所有正確結(jié)論的序號是
A. ①②③ B. ②③④ C. ①④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是邊AB上的一動點(不與點A、B重合),連接DE,點A關(guān)于直線DE的對稱點為F,連接EF并延長交BC于點G,連接DG,過點E作EH⊥DE交DG的延長線于點H,連接BH.
(1)求證:GF=GC;
(2)用等式表示線段BH與AE的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形的兩個內(nèi)角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準互余三角形”.
(1)若△ABC是“準互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準互余三角形”.試問在邊BC上是否存在點E(異于點D),使得△ABE也是“準互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準互余三角形”,求對角線AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com