【題目】如圖,ABC,AB=AC,A=36°,DE垂直平分ABACD,ABE,下列論述錯誤的是( )

A. BD平分ABC B. DAC的中點

C. AD=BD=BC D. BDC的周長等于AB+BC

【答案】B

【解析】試題解析:A∵△ABC中,AB=AC,A=36°,AB的中垂線DEACD,交ABE

∴∠ABC=ACB=180°-A=180°-36°=72°

AD=BD,即A=ABD=36°

∴∠DBC=ABC-ABD=72°-36°=36°,故A正確;

B、條件不足,不能證明,故不對;

C∵∠DBC=36°,C=72°

∴∠BDC=180°-72°-36°=72°C=BDC

AD=BD

AD=BD=BCC正確;

DAD=BD

∴△BDC的周長等于AB+BC

D正確;

故選B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某足球運動員站在點O處練習射門,將足球從離地面0.5m的A處正對球門踢出(點A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,已知足球飛行0.8s時,離地面的高度為3.5m.
(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?
(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,B,C兩點把線段AD分成2:5:3三部分,MAD的中點,BM=6cm,求CMAD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列一元一次方程解應用題:

學生在素質(zhì)教育基地進行社會實踐活動,幫助農(nóng)民伯伯采摘了黃瓜和茄子共80千克,了解到這些蔬菜的種植成本共180元,還了解到如下信息:

(1)求采摘的黃瓜和茄子各多少千克?

(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點O按如圖方式疊放在一起.

(1)如圖(1)若∠BOD=35°,求∠AOC的度數(shù),若∠AOC=135°,求∠BOD的度數(shù)。

(2)如圖(2)若∠AOC=150°,求∠BOD的度數(shù)

(3)猜想∠AOC與∠BOD的數(shù)量關(guān)系,并結(jié)合圖(1)說明理由.

(4)三角尺AOB不動,將三角尺CODOD邊與OA邊重合,然后繞點O按順時針或逆時針方向任意轉(zhuǎn)動一個角度,當∠AOD(0°<AOD<90°)等于多少度時,這兩塊三角尺各有一條邊互相垂直,直接寫出∠AOD角度所有可能的值,不用說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,可以理解為,它表示:數(shù)軸上表示數(shù)a的點到原點的距離,這是絕對值的幾何意義。進一步地,數(shù)軸上的兩個點A,B分別用數(shù)表示,那么A,B兩點之間的距離為,反過來,式子的幾何意義是:數(shù)軸上表示數(shù)的點和表示數(shù)的點之間的距離。利用此結(jié)論,的意義就是數(shù)軸上表示數(shù)的點到表示-2和表示3的點的距離之和是5,若是整數(shù),則符合的個數(shù)是(

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學文化課題活動中,把一副數(shù)學文化創(chuàng)意撲克牌中的4張撲克牌(如圖所示)洗勻后正面向下放在桌面上,從中隨機抽取2張牌,請你用列表或畫樹狀圖的方法,求抽取的2張牌的數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點是反比例函數(shù)在第一象限圖像上的一個動點,連接,以 為長,為寬作矩形,且點在第四象限,隨著點的運動,點也隨之運動,但點始終在反比例函數(shù)的圖像上,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a、b互為相反數(shù),b、C互為倒數(shù),并且m的立方等于它本身

(1)+ac;

(2)a>1,且m<0,S=|2a-3b|-2|b-m|-|b+|,2a-S的值.

(3)m≠0,試討論:x為有理數(shù)時|x+m|-|x-m|是否存在最大值?若存在,求出這個最大值:若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案