【題目】有兩個函數(shù)和,若對于每個使函數(shù)有意義的實數(shù),函數(shù)的值為兩個函數(shù)值中的較小的數(shù),則稱函數(shù)為這兩個函數(shù)的較小值函數(shù).例如:,則的較小值函數(shù)為
(1)函數(shù)是函數(shù)的較小值函數(shù).
①在如圖的平面直角坐標系中兩出函數(shù)的圖象.
②求函數(shù)的圖象與軸的交點坐標.
(2)函數(shù)是函數(shù)的較小值函數(shù).
①寫出函數(shù)的兩條性質(zhì).
②當時,函數(shù)值的取值范圍為.當取某個范圍內(nèi)的任意值時,為定值,直接寫出滿足條件的的取值范圍及其對應(yīng)的的值.
【答案】(1)①見解析;②函數(shù)y的圖象與x軸的交點坐標為(-2,0)、(1,0);(2)①性質(zhì):函數(shù)圖象位于一、三象限;當x≤-1或0<x≤1時,y隨x的增大而增大;②≤a≤1,b=1
【解析】
(1)①根據(jù)較小值函數(shù)的定義結(jié)合y1,y2的解析式作圖即可;
②當y=0時,由x+2=0和-2x+2=0可求得交點坐標;
(2)①畫出y的大致圖象,根據(jù)圖象寫出兩條性質(zhì)即可;
②求出y=時,或,然后根據(jù)題意結(jié)合函數(shù)圖象可得的值以及的取值范圍.
解:(1)①如圖所示:
②當y=0時,由x+2=0得x=-2,由-2x+2=0得x=1,
∴函數(shù)y的圖象與x軸的交點坐標為(-2,0)、(1,0);
(2)函數(shù)y的大致圖象如圖所示:
①性質(zhì):函數(shù)圖象位于一、三象限;②當x≤-1或0<x≤1時,y隨x的增大而增大;
②當y=時,即或,
∴或,
∵當時,函數(shù)值的取值范圍為,且當取某個范圍內(nèi)的任意值時,為定值,
∴根據(jù)函數(shù)圖象的最大值為1可知,b=1,
∵y取最大值時x=1,
∴a的取值范圍為:≤a≤1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形中,,,,點在邊上,點在四邊形內(nèi)部且到邊、的距離相等,若要使是直角三角形且是等腰三角形,則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC中,當頂角∠A的大小確定時,它的對邊(即底邊BC)與鄰邊(即腰AB或AC)的比值也就確定,我們把這個比值記作T(A),即,如T(60°)=1.
(1)理解鞏固:T(90°)= ,T(120°)= ;
(2)學(xué)以致用:如圖2,圓錐的母線長為9,底面直徑PQ=8,一只螞蟻從P點這沿著圓錐的側(cè)面爬行到點Q.
①求圓錐側(cè)面展開圖的扇形圓心角的數(shù);
②求螞蟻爬行的最短路徑長(精確到0.1).(參考數(shù)據(jù):T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=-1,給出四個結(jié)論:①c>0;② 2a-b=0;③<0;④若點為函數(shù)圖象上的兩點,則y1<y2,其中,正確結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,直線與x 軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是且經(jīng)過A、C兩點,與x軸的另一交點為點B.
(1)①直接寫出點B的坐標;②求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點 D 是邊 BC 上的點(與 B、C 兩點不重合),過點 D作 DE∥AC,DF∥AB,分別交 AB、AC 于 E、F 兩點,下列說法正確的是( )
A. 若 AD 平分∠BAC,則四邊形 AEDF 是菱形
B. 若 BD=CD,則四邊形 AEDF 是菱形
C. 若 AD 垂直平分 BC,則四邊形 AEDF 是矩形
D. 若 AD⊥BC,則四邊形 AEDF 是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富同學(xué)們的知識,拓展閱讀視野,學(xué)習(xí)圖書館購買了一些科技、文學(xué)、歷史等書籍,進行組合搭配成、、三種套型書籍,發(fā)放給各班級的圖書角供同學(xué)們閱讀,已知各套型的規(guī)格與價格如下表:
套型 | 套型 | 套型 | |
規(guī)格(本/套) | 12 | 9 | 7 |
價格(元/套) | 200 | 150 | 120 |
(1)已知搭配、兩種套型書籍共15套,需購買書籍的花費是2120元,問、兩種套型各多少套?
(2)若圖書館用來搭配的書籍共有2100本,現(xiàn)將其搭配成、兩種套型書籍,這兩種套型的總價為30750元,求搭配后剩余多少本書?
(3)若圖書館用來搭配的書籍共有122本,現(xiàn)將其搭配成、、三種套型書籍共13套,且沒有剩余,請求出所有搭配的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點E,CF⊥AF,且CF=CE.
(1)求證:CF是⊙O的切線;
(2)若sin∠BAC=,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com