【題目】在四邊形中,,,,點(diǎn)在邊上,點(diǎn)在四邊形內(nèi)部且到邊、的距離相等,若要使是直角三角形且是等腰三角形,則__________.
【答案】或
【解析】
分兩種情況,根據(jù)相似三角形的判定與性質(zhì)求解即可.
在四邊形ABCD中,,,,
∴AC=
在Rt△ACD中,DC=
∴BC=DC,
∴△ACB≌△ACD,
∴∠ACB=∠ACD,∠BAC=∠DAC
∵點(diǎn)在四邊形內(nèi)部且到邊、的距離相等,
∴點(diǎn)N在AC上.
(1)如圖1,當(dāng)MN⊥AC時(shí),易證得△CMN∽△CAB,
∴,
∵是等腰三角形,
∴AM=MN
∴CN=13-AN=13-MN,
∴,
∴MN=;
(2) 如圖2,當(dāng)MN⊥BC時(shí),易證得△CMN∽△CBA,
∴,
∵是等腰三角形,
∴AM=MN
∴CN=13-AN=13-MN,
∴,
∴MN=.
故答案為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B.圖②是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積y(cm)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值是__
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AO為Rt△ABC的角平分線,∠ACB=90°,以O為圓心,OC為半徑的圓分別交AO,BC于點(diǎn)D,E,連接ED并延長(zhǎng)交AC于點(diǎn)F.
(1)求證:AB是⊙O的切線;
(2)當(dāng)時(shí),求的值;
(3)在(2)的條件下,若⊙O的半徑為4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在任意四邊形ABCD中,AC,BD是對(duì)角線,E、F、G、H分別是線段BD、BC、AC、AD上的點(diǎn),對(duì)于四邊形EFGH的形狀,某班的學(xué)生在一次數(shù)學(xué)活動(dòng)課中,通過(guò)動(dòng)手實(shí)踐,探索出如下結(jié)論,其中錯(cuò)誤的是( )
A. 當(dāng)E,F,G,H是各條線段的中點(diǎn)時(shí),四邊形EFGH為平行四邊形
B. 當(dāng)E,F,G,H是各條線段的中點(diǎn),且AC⊥BD時(shí),四邊形EFGH為矩形
C. 當(dāng)E,F,G,H是各條線段的中點(diǎn),且AB=CD時(shí),四邊形EFGH為菱形
D. 當(dāng)E,F,G,H不是各條線段的中點(diǎn)時(shí),四邊形EFGH可以為平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AC=4,AB=2,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)得到矩形AB'C'D',使點(diǎn)B的對(duì)應(yīng)點(diǎn)B'落在AC上,B'C'交AD于點(diǎn)E,在B'C'上取點(diǎn)F,使B'F=AB.
(1)求證:AE=C'E;
(2)求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)“我最喜愛(ài)的體育項(xiàng)目”進(jìn)行了一次調(diào)查統(tǒng)計(jì),下面是他通過(guò)收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息,解答以下問(wèn)題:
(1)該班共有_____名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“乒乓球”部分所對(duì)應(yīng)的圓心角度數(shù)為_____;
(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動(dòng),有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹(shù)狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次數(shù)學(xué)興趣小組活動(dòng)中,李燕和劉凱兩位同學(xué)設(shè)計(jì)了如圖所示的兩個(gè)轉(zhuǎn)盤(pán)做游戲(每個(gè)轉(zhuǎn)盤(pán)被分成面積相等的幾個(gè)扇形,并在每個(gè)扇形區(qū)域內(nèi)標(biāo)上數(shù)字).游戲規(guī)則如下:兩人分別同時(shí)轉(zhuǎn)動(dòng)甲、乙轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后,若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和小于12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于12,則為平局;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和大于12,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).
(1)請(qǐng)用列表的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;
(2)分別求出李燕和劉凱獲勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)M和圖形W1,W2給出如下定義:點(diǎn)P為圖形W1上一點(diǎn),點(diǎn)Q為圖形W2上一點(diǎn),當(dāng)點(diǎn)M是線段PQ的中點(diǎn)時(shí),稱(chēng)點(diǎn)M是圖形W1,W2的“中立點(diǎn)”.如果點(diǎn)P(x1,y1),Q(x2,y2),那么“中立點(diǎn)”M的坐標(biāo)為(,).
已知,點(diǎn)A(-3,0),B(0,4),C(4,0).
(1)連接BC,在點(diǎn)D(,0),E(0,1),F(0,)中,可以成為點(diǎn)A和線段BC的“中立點(diǎn)”的是______;
(2)已知點(diǎn)G(3,0),⊙G的半徑為2,如果直線y=-x+1存在點(diǎn)K可以成為點(diǎn)A和⊙G的“中立點(diǎn)”,求點(diǎn)K的坐標(biāo);
(3)以點(diǎn)C為圓心,半徑為2作圓,點(diǎn)N為直線y=2x+4上的一點(diǎn),如果存在點(diǎn)N,使得y軸上的一點(diǎn)可以成為點(diǎn)N與⊙C的“中立點(diǎn)”,直接寫(xiě)出點(diǎn)N的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)函數(shù)和,若對(duì)于每個(gè)使函數(shù)有意義的實(shí)數(shù),函數(shù)的值為兩個(gè)函數(shù)值中的較小的數(shù),則稱(chēng)函數(shù)為這兩個(gè)函數(shù)的較小值函數(shù).例如:,則的較小值函數(shù)為
(1)函數(shù)是函數(shù)的較小值函數(shù).
①在如圖的平面直角坐標(biāo)系中兩出函數(shù)的圖象.
②求函數(shù)的圖象與軸的交點(diǎn)坐標(biāo).
(2)函數(shù)是函數(shù)的較小值函數(shù).
①寫(xiě)出函數(shù)的兩條性質(zhì).
②當(dāng)時(shí),函數(shù)值的取值范圍為.當(dāng)取某個(gè)范圍內(nèi)的任意值時(shí),為定值,直接寫(xiě)出滿足條件的的取值范圍及其對(duì)應(yīng)的的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com