【題目】如圖,已知直線ABCD相交于點(diǎn)O,OE是∠BOD的平分線,OFOE,∠BOE=20°.

(1)求∠AOC的度數(shù);

(2)求∠COF的度數(shù).

【答案】(1)40°;(2)110°.

【解析】試題分析:1)根據(jù)角平分線的性質(zhì)可得∠DOE=BOE= BOD,再由∠BOE=20°可得∠BOD的度數(shù),然后再根據(jù)對(duì)頂角相等可得答案;
2)根據(jù)垂直定義可得∠EOF=90°,再利用平角定義計(jì)算出∠AOF的度數(shù),然后可得∠COF的度數(shù).

試題解析:

1OE是∠BOD的平分線,
∴∠DOE=BOE=BOD,
∵∠BOE=20°,
∴∠BOD=40°
∴∠AOC=40°;
2EOFOO,
∴∠EOF=90°,
∵∠BOE=20°,
∴∠AOF=180°-90°-20°=70°
∴∠COF=70°+40°=110°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小麗和小華想利用摸球游戲決定誰去參加市里舉辦的書法比賽,游戲規(guī)則是:在一個(gè)不透明的袋子里裝有除數(shù)字外完全相同的4個(gè)小球,上面分別標(biāo)有數(shù)字2,3,4,5.一人先從袋中隨機(jī)摸出一個(gè)小球,另一人再?gòu)拇惺O碌?個(gè)小球中隨機(jī)摸出一個(gè)小球.若摸出的兩個(gè)小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.

(1)用列表法或畫樹狀圖法,求小麗參賽的概率.

(2)你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

中華優(yōu)秀傳統(tǒng)文化是中華民族的“根”和“魂”,是我們必須世代傳承的文化根脈、文化基因.為傳承優(yōu)秀傳統(tǒng)文化,某校為各班購(gòu)進(jìn)《三國(guó)演義》和《水滸傳》連環(huán)畫若干套,其中每套《三國(guó)演義》連環(huán)畫的價(jià)格比每套《水滸傳》連環(huán)畫的價(jià)格貴60元,用4800元購(gòu)買《水滸傳》連環(huán)畫的套數(shù)是用3600元購(gòu)買《三國(guó)演義》連環(huán)畫套數(shù)的2倍,求每套《水滸傳》連環(huán)畫的價(jià)格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】資料:小球沿直線撞擊水平格檔反彈時(shí)(不考慮垂直撞擊),撞擊路線與水平格檔所成的銳角等于反彈路線與水平格檔所成的銳角.以圖(1)為例,如果黑球 沿從 方向在 點(diǎn)處撞擊 邊后將沿從 方向反彈,根據(jù)反彈原則可知 ,即 .如圖(2)和(3), 是一個(gè)長(zhǎng)方形的彈子球臺(tái)面,有黑白兩球 ,小球沿直線撞擊各邊反彈時(shí)遵循資料中的反彈原則.(回答以下問題時(shí)將黑白兩球均看作幾何圖形中的點(diǎn),不考慮其半徑大小)

(1)探究(1):黑球 沿直線撞擊臺(tái)邊 哪一點(diǎn)時(shí),可以使黑球 經(jīng)臺(tái)邊 反彈一次后撞擊到白球 ?請(qǐng)?jiān)趫D(2)中畫出黑球 的路線圖,標(biāo)出撞擊點(diǎn),并簡(jiǎn)單證明所作路線是否符合反彈原則.

(2)探究(2):黑球 沿直線撞擊臺(tái)邊 哪一點(diǎn)時(shí),可以使黑球 先撞擊臺(tái)邊 反彈一次后,再撞擊臺(tái)邊 反彈一次撞擊到白球 ?請(qǐng)?jiān)趫D(3)中畫出黑球 的路線圖,標(biāo)出黑球撞擊 邊的撞擊點(diǎn),簡(jiǎn)單說明作法,不用證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解題:

定義:如果一個(gè)數(shù)的平方等于-1,記為i2=-1,這個(gè)數(shù)i叫做虛數(shù)單位.那么和我們所學(xué)的實(shí)數(shù)對(duì)應(yīng)起來就叫做復(fù)數(shù),表示為a+bi(a,b為實(shí)數(shù)),a叫這個(gè)復(fù)數(shù)的實(shí)部,b叫做這個(gè)復(fù)數(shù)的虛部,它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類似.

例如計(jì)算:(5+i)×(3-4i)=19-17i.

(1)填空:i3= ,i4= .

(2)計(jì)算:(3+i)2;

(3)試一試:請(qǐng)利用以前學(xué)習(xí)的有關(guān)知識(shí)將化簡(jiǎn)成a+bi的形式

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明利用燈光下自己的影子長(zhǎng)度來測(cè)量路燈的高度.如圖,CDEF是兩等高的路燈,相距27m,身高1.5m的小明(AB)站在兩路燈之間(DB、F共線),被兩路燈同時(shí)照射留在地面的影長(zhǎng)BQ=4m,BP=5m

(1)小明距離路燈多遠(yuǎn)?

(2)求路燈高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.

(1)已知:如圖1,四邊形是“等對(duì)角四邊形”, , .求, 的度數(shù).

(2)在探究“等對(duì)角四邊形”性質(zhì)時(shí):

① 小紅畫了一個(gè)“等對(duì)角四邊形”(如圖2),其中 ,此時(shí)她發(fā)現(xiàn)成立.請(qǐng)你證明此結(jié)論.

② 由此小紅猜想:“對(duì)于任意‘等對(duì)角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請(qǐng)證明;若不正確,請(qǐng)舉出反例.

(3)已知:在“等對(duì)角四邊形”中, , ,AB=AD=4,.求∠D和對(duì)角線的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD,四邊形BEFG均為正方形,連接AG,CE.試說明:

(1)AG=CE;

(2)AG⊥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個(gè)交點(diǎn)是A(-2,-4,C(4,n),與y軸交于點(diǎn)B,與x軸交于點(diǎn)D

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)連結(jié)OA,OC,求△AOC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案