【題目】某市為了節(jié)約用水,采用分段收費(fèi)標(biāo)準(zhǔn).若某戶居民每月應(yīng)交水費(fèi)y(元)與用水量x(立方米)之間關(guān)系的圖象如圖所示,根據(jù)圖象回答:
(1)該市自來水收費(fèi),每戶用水不超過5立方米時(shí),每立方米收費(fèi)多少元?超過5立方米時(shí),超過的部分每立方米收費(fèi)多少元?
(2)求出y與x之間的關(guān)系式.
(3)若某戶居民某月用水量為3.5立方米,則應(yīng)交水費(fèi)多少元?若某戶居民某月交水費(fèi)17元,則該戶居民用水多少立方米?
【答案】(1)每戶使用不足5噸時(shí),每噸收費(fèi)2元,超過5噸時(shí),每噸收費(fèi)3.5元;(2)見解析;(3)某戶居民每月用水3.5噸,應(yīng)交水費(fèi)7元;若某月交水費(fèi)17元,該戶居民用水7噸.
【解析】
(1)因?yàn)榇私y(tǒng)計(jì)圖是兩條直線;從圖中看出每戶使用不足5噸時(shí),每噸收費(fèi)10÷5=2元,超過5噸時(shí),每噸收費(fèi)(20.5-10)÷(8-5)=3.5元;
(2)根據(jù)圖像可分為兩種情況當(dāng)0<x≤5時(shí),y=2x,當(dāng)x>5時(shí),y=10+3.5(x﹣5),即y=3.5x﹣7.5.
(3)直接把數(shù)據(jù)代入到(2)的方程里面即可解答
(1)每戶使用不足5噸時(shí),每噸收費(fèi):10÷5=2(元),
超過5噸時(shí),每噸收費(fèi):(20.5﹣10)÷(8﹣5)=3.5(元)
(2)當(dāng)0<x≤5時(shí),y=2x,
當(dāng)x>5時(shí),y=10+3.5(x﹣5),即y=3.5x﹣7.5.
∴y與x之間的函數(shù)關(guān)系式為y=
(3)當(dāng)x=3.5時(shí),y=2x=3.5×2=7(元)
當(dāng)y=17時(shí),3.5x﹣7.5=17,解得:x=7.
答:某戶居民每月用水3.5噸,應(yīng)交水費(fèi)7元;若某月交水費(fèi)17元,該戶居民用水7噸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=BC=10,以AB為直徑作⊙O分別交AC,BC于點(diǎn)D,E,連接DE和DB,過點(diǎn)E作EF⊥AB,垂足為F,交BD于點(diǎn)P.
(1)求證:AD=DE;
(2)若CE=2,求線段CD的長(zhǎng);
(3)在(2)的條件下,求△DPE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共50件,需購(gòu)買甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料30千克、乙種材料10千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各20千克.經(jīng)測(cè)算,購(gòu)買甲、乙兩種材料各1千克共需資金40元,購(gòu)買甲種材料2千克和乙種材料3千克共需資金105元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠用于購(gòu)買甲、乙兩種材料的資金不超過38000元,且生產(chǎn)B產(chǎn)品不少于28件,問符合條件的生產(chǎn)方案有哪幾種?
(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費(fèi)200元,生產(chǎn)一件B產(chǎn)品需加工費(fèi)300元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這50件產(chǎn)品的成本最低?(成本=材料費(fèi)+加工費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解題: 學(xué)習(xí)了二次根式后,你會(huì)發(fā)現(xiàn)一些含有根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2 =(1+ )2 , 我們來進(jìn)行以下的探索:
設(shè)a+b =(m+n )2(其中a,b,m,n都是正整數(shù)),則有a+b =m2+2n2+2mn ,∴a=m+2n2 , b=2mn
, 這樣就得出了把類似a+b 的式子化為平方式的方法.
請(qǐng)仿照上述方法探索并解決下列問題:
(1)當(dāng)a,b,m,n都為正整數(shù)時(shí),若a﹣b =(m﹣n )2 , 用含m,n的式子分別表示a,b,得a= , b=;
(2)利用上述方法,找一組正整數(shù)a,b,m,n填空:﹣ =(﹣ )2
(3)a﹣4 =(m﹣n )2且a,m,n都為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B為定點(diǎn),直線l∥AB,P是直線l上一動(dòng)點(diǎn).對(duì)于下列各值:①線段AB的長(zhǎng)②△PAB的周長(zhǎng)③△PAB的面積④∠APB的度數(shù)其中不會(huì)隨點(diǎn)P的移動(dòng)而變化的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C、D兩點(diǎn)在以AB為直徑的半圓O上,AD平分∠BAC,AB=20,AD=4 ,DE⊥AB于E.
(1)求DE的長(zhǎng).
(2)求證:AC=2OE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=(x﹣1)2﹣1.
(1)該拋物線的對(duì)稱軸是 , 頂點(diǎn)坐標(biāo);
(2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并在圖中的直角坐標(biāo)系內(nèi)描點(diǎn)畫出該拋物線的圖象;
x | … | … | |||||
y | … | … |
(3)根據(jù)圖象,直接寫出當(dāng)y<0時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正△ABC的邊長(zhǎng)為4,點(diǎn)P為BC邊上的任意一點(diǎn)(不與點(diǎn)B、C重合),且∠APD=60°,PD交AB于點(diǎn)D.設(shè)BP=x,BD=y,則y關(guān)于x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com