【題目】(10分)如圖(1)在ΔABC中,∠ACB=90°,AC=BC,直線MN經過點C,且AD⊥MN于點D,BE⊥MN于點E.
(1)求證:①ΔADC≌ΔCEB ②DE=AD+BE
(2)當直線MN繞點C旋轉到圖(2)的位置時,DE、AD、BE 有怎樣的關系?并加以證明.
【答案】詳見解析.
【解析】
試題分析:(1)由∠ACB=90°,得∠ACD+∠BCE=90°,而AD⊥MN于D,BE⊥MN于點E,則∠ADC=∠CEB=90°,根據等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,所以AD=CE,DC=BE,即可得到DE=DC+CE=BE+AD.(2)根據等角的余角相等得到∠ACD=∠CBE,易得△ADC≌△CEB,得到AD=CE,DC=BE,所以DE=CE-CD=AD-BE.
試題解析:(1)證明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于點E,
∴∠ADC=∠CEB=90°,
∴∠ACD+∠BCE=90°∠BCE+∠CBE=90°,
∴∠ACD=∠CBE.
在△ADC和△CEB中,
∴△ADC≌△CEB,
∴AD=CE,DC=BE,
∴DE=DC+CE=BE+AD;
DE=AD-BE;理由如下:
在△ADC和△CEB中,
∴△ADC≌△CEB,
∴AD=CE,DC=BE,
∴DE =CE-CD=AD-BE;
科目:初中數學 來源: 題型:
【題目】如圖,已知在RtABC中,∠C=90°,∠A=30°,在直線AC上找點P,使△ABP是等腰三角形,則∠APB的度數為_______________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某小區(qū)某月家庭用水量的情況,從該小區(qū)隨機抽取部分家庭進行調查,以下是根據調查數據繪制的統(tǒng)計圖表的一部分
分組 | 家庭用水量x/噸 | 家庭數/戶 |
A | 0≤x≤4.0 | 4 |
B | 4.0<x≤6.5 | 13 |
C | 6.5<x≤9.0 | |
D | 9.0<x≤11.5 | |
E | 11.5<x≤14.0 | 6 |
F | x>4.0 | 3 |
根據以上信息,解答下列問題
(1)家庭用水量在4.0<x≤6.5范圍內的家庭有 戶,在6.5<x≤9.0范圍內的家庭數占被調查家庭數的百分比是 %;
(2)本次調查的家庭數為 戶,家庭用水量在9.0<x≤11.5范圍內的家庭數占被調查家庭數的百分比是 %;
(3)家庭用水量的中位數落在 組;
(4)若該小區(qū)共有200戶家庭,請估計該月用水量不超過9.0噸的家庭數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com