【題目】如圖,已知D為△ABC的BC邊的中點,DE、DF分別平分∠ADB和∠ADC,
求證:BE+CF>EF.
【答案】證明見解析.
【解析】
試題分析:在 DA 上取一點 M ,使 DM=DB=DC ,連結(jié) EM 、 MF ,實質(zhì)上是將△DBE 及△DFC 分別沿 DE 、 DF 翻折 180° 得到△DEM 及△MFD ,從而使問題得到解決的 .
試題解析:在 DA 上取一點 M ,使 DM=DB=DC ,連結(jié) EM 、 MF ,
∵ DE 平分∠ADB ,
∴ ∠BDE= ∠EDM.
又∵ DM=BD , DE=DE ,
∴ △BED ≌△MED.
同理可得△MFD ≌△CFD.
∴ BE=EM , CF=MF.
∵ 在△EMF 中, EM+MF>EF.
∴ BE+CF>EF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)在一次百米賽跑中,路程S(米)與時間t(秒)之間的關(guān)系如圖所示.根據(jù)圖象回答下列問題:
(1)3.8秒時,哪位同學(xué)處于領(lǐng)先位置?
(2)在這次賽跑中,哪位同學(xué)先到達(dá)終點?比另一個同學(xué)早多少時間到達(dá)?約幾秒后哪位同學(xué)被哪位同學(xué)追上?
(3)甲同學(xué)所走的路程S(米)與時間t(秒)之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D為AC的中點,△ABD的周長比△BDC的周長大2,且BC的邊長是方程的解,求△ABC三邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC三個頂點都在格點上,點A、B、C的坐標(biāo)分別為A(﹣4,1),B(﹣1,1),C(﹣1,3)請解答下列問題:
(1)畫出△ABC關(guān)于原點O的中心對稱圖形△A1B1C1,并寫出點C的對應(yīng)點C1的坐標(biāo);
(2)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°后得到的△A2B2C2,并直接寫出點A旋轉(zhuǎn)至A2經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天早晨,小玲從家出發(fā)勻速步行到學(xué)校,小玲出發(fā)一段時間后,她的媽媽發(fā)現(xiàn)小玲忘帶了一件必需的學(xué)習(xí)用品,于是立即下樓騎自行車,沿小玲行進(jìn)的路線,勻速去追小玲,媽媽追上小玲將學(xué)習(xí)用品交給小玲后,立即沿原路線勻速返回家里,但由于路上行人漸多,媽媽返回時騎車的速度只是原來速度的一半,小玲繼續(xù)以原速度步行前往學(xué)校,媽媽與小玲之間的距離y(米)與小玲從家出發(fā)后步行的時間x(分)之間的關(guān)系如圖所示(小玲和媽媽上、下樓以及媽媽交學(xué)習(xí)用品給小玲耽擱的時間忽略不計).當(dāng)媽媽剛回到家時,小玲離學(xué)校的距離為_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)與x軸交于點A(﹣1,0),B(4,0),與y軸交于點C(0,4).
(1)求此拋物線的解析式;
(2)設(shè)點P(2,n)在此拋物線上,AP交y軸于點E,連接BE,BP,請判斷△BEP的形狀,并說明理由;
(3)設(shè)拋物線的對稱軸交x軸于點D,在線段BC上是否存在點Q,使得△DBQ成為等腰直角三角形?若存在,求出點Q的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點A(2,1),B(﹣1,﹣3).
(1)求此一次函數(shù)的解析式;
(2)求此一次函數(shù)的圖象與x軸、y軸的交點坐標(biāo);
(3)求此一次函數(shù)的圖象與兩坐標(biāo)軸所圍成的三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中點,CE⊥BD
(1)求證:BE=AD;
(2)求證:AC是線段ED的垂直平分線;
(3)△DBC是等腰三角形嗎?并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y=(x>0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.設(shè)直線EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(2)求△OEF的面積;
(3)請結(jié)合圖象直接寫出不等式k2x+b﹣>0的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com