【題目】閱讀下面解方程的步驟,在后面的橫線上填寫此步驟的依據(jù):
解:去分母,得.①依據(jù):_________
去括號(hào),得.
移項(xiàng),得.②依據(jù):__________
合并同類項(xiàng),得.
系數(shù)化為1,得.
∴是原方程的解.
【答案】①等式的基本性質(zhì)2:等式的兩邊都乘以同一個(gè)數(shù),所得的等式仍然成立; ②等式的基本性質(zhì)1:等式的兩邊都加上(或減去)同一個(gè)數(shù)或整式,所得的等式仍然成立
【解析】
利用等式的基本性質(zhì)判斷即可.
解:去分母,得 3(3x+1)=2(x-2).①依據(jù)等式的基本性質(zhì)2:等式的兩邊都乘以同一個(gè)數(shù),所得的等式仍然成立,
去括號(hào),得 9x+3=2x-4.
移項(xiàng),得 9x-2x=-4-3.②依據(jù)等式的基本性質(zhì)1:等式的兩邊都加上(或減去)同一個(gè)數(shù)或整式,所得的等式仍然成立,
合并同類項(xiàng),得 7x=-7.
系數(shù)化為1,得 x=-1.
∴x=-1是原方程的解.
故答案為:①等式的基本性質(zhì)2:等式的兩邊都乘以同一個(gè)數(shù),所得的等式仍然成立;②等式的基本性質(zhì)1:等式的兩邊都加上(或減去)同一個(gè)數(shù)或整式,所得的等式仍然成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖象(折線ABCDE)描述了一汽車在某一直線上的行駛過程中,汽車離出發(fā)地的距離s(千米)和行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系,根據(jù)圖中提供的信息,給出下列說法,其中正確的說法是( 。
A. 汽車共行駛了120千米 B. 汽車在整個(gè)行駛過程中平均速度為40千米
C. 汽車返回時(shí)的速度為80千米/時(shí) D. 汽車自出發(fā)后1.5小時(shí)至2小時(shí)之間速度不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏是一位善于思考的學(xué)生,在一次數(shù)學(xué)活動(dòng)課上,她將一副三角板按如圖位置擺放,A、B、D在同一直線上,EF∥AD,∠BAC=∠EDF=90°,∠C=45°,∠E=60°,測(cè)得DE=8,則BD的長是( )
A. 10+4 B. 10﹣4 C. 12﹣4 D. 12+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在8×8的方格中建立平面直角坐標(biāo)系,有點(diǎn)A(﹣2,2)、B(﹣3,1)、C(﹣1,0),P(a,b)是△ABC的AC邊上點(diǎn),將△ABC平移后得到△A1B1C1,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(a+4,b+2).
(1)畫出平移后的△A1B1C1,寫出點(diǎn)A1、C1的坐標(biāo);
(2)若以A、B、C、D為頂點(diǎn)的四邊形為平行四邊形,寫出方格中D點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點(diǎn)A的坐標(biāo)為(0,1),在AD邊上有一點(diǎn)E(2,1),過點(diǎn)E的直線與BC交于點(diǎn)F.若EF平分矩形ABCD的面積,則直線EF的解析式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點(diǎn),過E作直線l∥BC,交直線CD于點(diǎn)F.將直線l向右平移,設(shè)平移距離BE為t(t≥0),直角梯形ABCD被直線l掃過的面積(圖中陰影部分)為S,S關(guān)于t的函數(shù)圖象如圖②所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點(diǎn)橫坐標(biāo)為4.
信息讀取
(1)梯形上底的長AB= ;
(2)直角梯形ABCD的面積= ;
圖象理解
(3)寫出圖②中射線NQ表示的實(shí)際意義;
(4)當(dāng)2<t<4時(shí),求S關(guān)于t的函數(shù)關(guān)系式;
問題解決
(5)當(dāng)t為何值時(shí),直線l將直角梯形ABCD分成的兩部分面積之比為1:3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長均為1的小正方形網(wǎng)格紙中,△OAB的頂點(diǎn)O,A,B均在格點(diǎn)上,且O是直角坐標(biāo)系的原點(diǎn),點(diǎn)A在軸上.
(1)以O為位似中心,將△OAB放大,使得放大后的△OA1B1與△OAB對(duì)應(yīng)線段的比為2∶1,畫出△OA1B1
(所畫△OA1B1與△OAB在原點(diǎn)兩側(cè));
(2)直接寫出點(diǎn)A1、B1的坐標(biāo)______________________.
(3)直接寫出____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y= x+6分別與x軸、y軸交于A、B兩點(diǎn):直線y= x與AB于點(diǎn)C,與過點(diǎn)A且平行于y軸的直線交于點(diǎn)D.點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位的進(jìn)度沿x軸向左運(yùn)動(dòng).過點(diǎn)E作x軸的垂線,分別交直線AB、OD于P、Q兩點(diǎn),以PQ為邊向右作正方形PQMN.設(shè)正方形PQMN與△ACD重疊的圖形的周長為L個(gè)單位長度,點(diǎn)E的運(yùn)動(dòng)時(shí)間為t(秒).
(1)直接寫出點(diǎn)C和點(diǎn)A的坐標(biāo).
(2)若四邊形OBQP為平行四邊形,求t的值.
(3)0<t<5時(shí),求L與t之間的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是今年某水庫一周內(nèi)的水位變化情況(正號(hào)表示水位比前一天上升,負(fù)號(hào)表示水位比前一天下降),該水庫的警戒水位是. (上周末的水位達(dá)到警戒水位).
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位變化/ |
(1)本周星期________河流的水位最高,水位是________,本周星期________河流的水位最低,水位是________;
(2)本周三的水位位于警戒水位之_____(填“上”或“下”),與警戒水位的距離是______;
(3)與上周末相比,本周末河流水位是上升了還是下降了?變化了多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com