【題目】已知:如圖,梯形ABCD與梯形ABCD相似,ADBC,AD′∥BC′,∠A=∠A′.AD=4,AD′=6,AB=6,BC′=12.求:

(1)梯形ABCD與梯形ABCD的相似比k

(2)ABBC的長;

(3)DC′∶DC

【答案】(1)k=2∶3;(2)AB'=9,BC=8;(3)3∶2.

【解析】

根據(jù)相似多邊形的對應(yīng)邊成比例列式計(jì)算即可求出.

∵梯形ABCD∽梯形ABCD相似,

∴AD:AD′=4:6=2:3;

(2)由(1)知AB: AB′= AD:AD′=2:3,

AB=6,

AB′=9;

同理可得,BC=8;

(3)∵梯形ABCD梯形ABCD相似,

DCDC= AD′:AD=3:2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,點(diǎn)E是BC邊上一點(diǎn),且BE:EC=2:1,AE與BD交于點(diǎn)F,則△AFD與四邊形DFEC的面積之比是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰△ABC,∠BAC120°,ADBCD點(diǎn),點(diǎn)PBA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),若ACAO+AP

1)求證:∠APO=∠OCA;

2)求證:△OCP是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是BCCD邊上的點(diǎn),∠EAF45°

1)如圖(1),試判斷EF,BE,DF間的數(shù)量關(guān)系,并說明理由;

2)如圖(2),若AHEF于點(diǎn)H,試判斷線段AHAB的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)EOA的中點(diǎn),連接BE并延長交AD于點(diǎn)F,已知SAEF=4,則下列結(jié)論:①SBCE=36;SABE=12;④△AEFACD,其中一定正確的是(  )

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D,E分別是AB,AC上的點(diǎn),BECD交與點(diǎn)O,給出下列四個(gè)條件:①∠DBO=ECO,②∠BDO=CEO,③BD=CE,④OB=OC.

1)從上述四個(gè)條件中,任選兩個(gè)為條件,可以判定ABC是等腰三角形?寫出所有可能的情況.

2)選擇(1)中的某一種情形,進(jìn)行說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)E在直角ABC的斜邊AB上,以AE為直徑的O與直角邊BC相切于點(diǎn)D.

(1)求證:AD平分BAC;

(2)若BE=2,BD=4,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016四川省攀枝花市)某市為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制度.若每月用水量不超過14噸(含14噸),則每噸按政府補(bǔ)貼優(yōu)惠價(jià)m元收費(fèi);若每月用水量超過14噸,則超過部分每噸按市場價(jià)n元收費(fèi).小明家3月份用水20噸,交水費(fèi)49元;4月份用水18噸,交水費(fèi)42元.

(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)和市場價(jià)分別是多少?

(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,請寫出yx之間的函數(shù)關(guān)系式;

(3)小明家5月份用水26噸,則他家應(yīng)交水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC為O的直徑,B為O上一點(diǎn),ACB=30°,延長CB至點(diǎn)D,使得CB=BD,過點(diǎn)D作DEAC,垂足E在CA的延長線上,連接BE.

(1)求證:BE是O的切線;

(2)當(dāng)BE=3時(shí),求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案