【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C在⊙O上,過點(diǎn)C的直線與AB的延長線交于點(diǎn)P ACPC,∠COB2PCB

1)求證:PC是⊙O的切線;

2)求證:BCAB;

3)點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)N,若AB8,求MN·MC的值.

【答案】1)見解析;(2)見解析;(332

【解析】

1)已知C在圓上,故只需證明OCPC垂直即可;根據(jù)圓周角定理,易得∠PCB+OCB=90°,即OCCP;故PC是⊙O的切線;
2AB是直徑;故只需證明BC與半徑相等即可;
3)連接MA,MB,由圓周角定理可得∠ACM=BCM,進(jìn)而可得MBN∽△MCB,故BM2=MNMC;代入數(shù)據(jù)可得MNMC=BM2=8

1)證明:∵OA=OC,   

∴∠A=ACO

又∵∠COB=2A,∠COB=2PCB,  

∴∠A=ACO=PCB

又∵AB是⊙O的直徑   

 ∴∠ACO+OCB=90°

∴∠PCB+OCB=90°

OCCP,

OC是⊙O的半徑.   

 ∴PC是⊙O的切線.

2)證明:∵AC=PC,  

∴∠A=P,

∴∠A=ACO=PCB=P

又∵∠COB=A+ACO,∠CBO=P+PCB,

∴∠COB=CBO,    

BC=OC

3)解:連接MB,MA

∵點(diǎn)M的中點(diǎn),

∴∠ACM=BCM

∵∠ACM=ABM,  

∴∠BCM=ABM

又∵∠BMN=CMB,

∴△MBN∽△MCB

  

又∵AB是⊙O的直徑,

∴∴∠AMB=90°AM=BM

AB=8,  

  

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AC為直徑的⊙OAB于點(diǎn)D,交BC于點(diǎn)E

(1)求證:BECE;

(2)BD2,BE3,求tanBAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生的閱讀能力,我市某校開展了“讀好書,助成長”的活動(dòng),并計(jì)劃購置一批圖書,購書前,對學(xué)生喜歡閱讀的圖書類型進(jìn)行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計(jì)圖,如圖所示,請根據(jù)統(tǒng)計(jì)圖回答下列問題:

1)本次調(diào)查共抽取了 名學(xué)生,兩幅統(tǒng)計(jì)圖中的m ,n

2)已知該校共有3600名學(xué)生,請你估計(jì)該校喜歡閱讀“A”類圖書的學(xué)生約有多少人?

3)學(xué)校將舉辦讀書知識(shí)競賽,九年級1班要在本班3名優(yōu)勝者(21女)中隨機(jī)選送2人參賽,請用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,則下列關(guān)系正確的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,EAD的中點(diǎn),已知△DEF的面積為S,則四邊形ABCE的面積為( 。

A. 8S B. 9S C. 10S D. 11S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線向右平移2個(gè)單位,得到拋物線的圖象是拋物線對稱軸上的一個(gè)動(dòng)點(diǎn),直線平行于y,分別與直線、拋物線交于點(diǎn)A是以點(diǎn)A或點(diǎn)B為直角頂點(diǎn)的等腰直角三角形,求滿足條件的t的值, ______ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點(diǎn)A﹣1,0)、C03),與x軸交于另一點(diǎn)B,拋物線的頂點(diǎn)為D

1)求此二次函數(shù)解析式;

2)連接DC、BC、DB,求證:△BCD是直角三角形;

3)在對稱軸右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC為等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點(diǎn),FAM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長線于點(diǎn)E,交DC于點(diǎn)N

1)求證:△ABM∽△EFA;

2)若AB=12,BM=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價(jià)為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10

1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;

2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤最大;

3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案

方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;

方案B:每天銷售量不少于10件,且每件文具的利潤至少為25

請比較哪種方案的最大利潤更高,并說明理由

查看答案和解析>>

同步練習(xí)冊答案