【題目】某商場要經(jīng)營一種新上市的文具,進(jìn)價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;
(3)商場的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案
方案A:該文具的銷售單價高于進(jìn)價且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請比較哪種方案的最大利潤更高,并說明理由
【答案】(1) w=-10x2+700x-10000;(2) 即銷售單價為35元時,該文具每天的銷售利潤最大;
(3) A方案利潤更高.
【解析】
試題(1)根據(jù)利潤=(單價-進(jìn)價)×銷售量,列出函數(shù)關(guān)系式即可.
(2)根據(jù)(1)式列出的函數(shù)關(guān)系式,運用配方法求最大值.
(3)分別求出方案A、B中x的取值范圍,然后分別求出A、B方案的最大利潤,然后進(jìn)行比較.
解:(1)w=(x-20)(250-10x+250)=-10x2+700x-10000.
(2)∵w=-10x2+700x-10000=-10(x-35)2+2250
∴當(dāng)x=35時,w有最大值2250,
即銷售單價為35元時,該文具每天的銷售利潤最大.
(3)A方案利潤高,理由如下:
A方案中:20<x≤30,函數(shù)w=-10(x-35)2+2250隨x的增大而增大,
∴當(dāng)x=30時,w有最大值,此時,最大值為2000元.
B方案中:,解得x的取值范圍為:45≤x≤49.
∵45≤x≤49時,函數(shù)w=-10(x-35)2+2250隨x的增大而減小,
∴當(dāng)x=45時,w有最大值,此時,最大值為1250元.
∵2000>1250,
∴A方案利潤更高
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點C在⊙O上,過點C的直線與AB的延長線交于點P, AC=PC,∠COB=2∠PCB.
(1)求證:PC是⊙O的切線;
(2)求證:BC=AB;
(3)點M是弧AB的中點,CM交AB于點N,若AB=8,求MN·MC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在函數(shù)(x>0)的圖象上,有點,,,…,,,若的橫坐標(biāo)為a,且以后每點的橫坐標(biāo)與它前面一個點的橫坐標(biāo)的差都為2,過點,,,…,,分別作x軸、y軸的垂線段,構(gòu)成若干個矩形如圖所示,將圖中陰影部分的面積從左到右依次記為,,,…,,則=______,+++…+=__________.(用n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為10,AG=CH=8,BG=DH=6,連接GH,則線段GH的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線AC與BD相交于點O.將∠COB繞點O順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0<α<90°),角的兩邊分別與BC,AB交于點M,N,連接DM,CN,MN,下列四個結(jié)論:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正確結(jié)論的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為6cm,點B,D之間的距離為8cm,則線段AB的長為( 。
A.5 cmB.4.8 cmC.4.6 cmD.4 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3,頂點為E,該拋物線與x軸交于A,B兩點,與y軸交子點C,且OB=OC=3OA,直線y=﹣x+1與y軸交于點D.求∠DBC﹣∠CBE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點M為拋物線與x軸的焦點為A(-3,0),B(1,0),與y軸交于點C,連結(jié)AM,AC,點D為線段AM上一動點(不與A重合),以CD為斜邊在CD上側(cè)作等腰Rt△DEC,連結(jié)AE,OE.
(1)求拋物線的解析式及頂點M的坐標(biāo);
(2)求解AD:OE的值;
(3)當(dāng)△OEC為直角三角形時,求AD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于二次函數(shù)有下列說法:①如果m=2,則y有最小值3;②如果當(dāng)x=1時的函數(shù)值與x=2018時的函數(shù)值相等,則當(dāng)x=2019時的函數(shù)值是3;③如果m>0,則當(dāng)時y隨x的增大而減小,則④如果該二次函數(shù)有最小值T,則T的最大值是1,其中正確的說法是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com