【題目】如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于C點(diǎn),AC平分∠DAB.

(1)求證:AD⊥CD;

(2)若AD=2,AC=,求⊙O的半徑R的長(zhǎng).

【答案】(1)證明見(jiàn)解析

(2)

【解析】

試題(1)連接OC,由題意得OCCD.又因?yàn)?/span>AC平分DAB,則1=2=DAB.即可得出ADOC,則ADCD;

(2)連接BC,則ACB=90°,可證明ADC∽△ACB.則,從而求得R

試題解析:(1)證明:連接OC,

直線CDO相切于C點(diǎn),ABO的直徑,

OCCD

AC平分DAB,

∴∠1=2=DAB

COB=21=DAB,

ADOC,

ADCD

(2)連接BC,則ACB=90°,

ADCACB

∵∠1=2,3=ACB=90°,

∴△ADC∽△ACB

R=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中拋物線y=(x+1)(x3)與x軸相交于A、B兩點(diǎn),若在拋物線上有且只有三個(gè)不同的點(diǎn)C1、C2、C3,使得ABC1、ABC2、ABC3的面積都等于m,則m的值是( 。

A. 6 B. 8 C. 12 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】去學(xué)校食堂就餐,經(jīng)常會(huì)在一個(gè)買(mǎi)菜窗口前等待,經(jīng)調(diào)查發(fā)現(xiàn),同學(xué)的舒適度指數(shù)y與等時(shí)間x(分)之間滿足反比例函數(shù)關(guān)系,如下表:

等待時(shí)間x

1

2

5

10

20

舒適度指數(shù)y

100

50

20

10

5

已知學(xué)生等待時(shí)間不超過(guò)30分鐘

(1)求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.

(2)若等待時(shí)間8分鐘時(shí),求舒適度的值;

(3)舒適度指數(shù)不低于10時(shí),同學(xué)才會(huì)感到舒適.請(qǐng)說(shuō)明,作為食堂的管理員,讓每個(gè)在窗口買(mǎi)菜的同學(xué)最多等待多少時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx的頂點(diǎn)為C(1,),P是拋物線上位于第一象限內(nèi)的一點(diǎn),直線OP交該拋物線對(duì)稱軸于點(diǎn)B,直線CPx軸于點(diǎn)A

(1)求該拋物線的表達(dá)式;

(2)如果點(diǎn)P的橫坐標(biāo)為m,試用m的代數(shù)式表示線段BC的長(zhǎng);

(3)如果ABP的面積等于ABC的面積,求點(diǎn)P坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長(zhǎng)線上,弦CD交AB于E,連接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,過(guò)E作弦GF⊥BC交圓與G、F兩點(diǎn),連接CF、BG.則下列結(jié)論:①CD⊥AB;②PC是⊙O的切線;③OD∥GF;④弦CF的弦心距等于BG.則其中正確的是(  )

A. ①②④ B. ③④ C. ①②③ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,且AB=AC,D是上一點(diǎn),AD與BC交于E,AF⊥DB,垂足為F.

(1)求證:∠ADB=∠CDE;

(2)若AF=DC=6,AB=10,求△DBC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(12)如圖,已知拋物線yax2+bx2(a≠0)x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且D(2,3)B(4,0)

(1)求拋物線的解析式;

(2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C,求△BMC面積的最大值;

(3)(2)中△BMC面積最大的條件下,過(guò)點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,與軸的一個(gè)交點(diǎn)坐標(biāo)為(1,0),其部分圖象如圖所示,下列結(jié)論:

4ac<b2; 方程ax2+bx+c=0的兩個(gè)根是 3a+c>0; 當(dāng)y>0時(shí),x的取值范圍是-1≤x<3; 當(dāng)x<0時(shí),yx增大而增大;

其中結(jié)論正確有__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰△ABC內(nèi)接于半徑為5O,點(diǎn)O到底邊BC的距離為3,則AB的長(zhǎng)為___

查看答案和解析>>

同步練習(xí)冊(cè)答案