【題目】垃圾分一分,明天美十分”.環(huán)保部門計劃訂制一批垃圾分類宣傳海報,海報版面不小于300平方米,當宣傳海報的版面為300平方米時,價格為80/平方米.為了支持垃圾分類促進環(huán)保,廣告公司給予以下優(yōu)惠:宣傳海報版面每增加1平方米,每平方米的價格減少0.2元,但不能低于50/平方米.假設宣傳海報的版面增加平方米后,總費用為.

1)求關于的函數(shù)表達式;

2)訂制宣傳海報的版面為多少平方米時總費用最高?最高費用為多少元?

3)環(huán)保部門希望總費用盡可能低,那么應該訂制多少平方米的海報?

【答案】1 ;(2)訂制宣傳海報350平方米時總費用最高,最高為24500元;(3)應該訂制450平方米的海報.

【解析】

1)根據題意可以寫出y關于x的函數(shù)表達式;
2)根據(1)中的函數(shù)解析式和x的取值范圍,可以解答本題;
3)根據題意和x的取值范圍可以求得應該訂制多少平方米的海報,可以使得環(huán)保部門總費用盡可能低.

解:(1)由題意可得,

,

y關于x的函數(shù)表達式為y=x2+20x+24000;

2)∵

此時

∴訂制宣傳海報350平方米時總費用最高,最高為24500.

3))∵y=x2+20x+24000=(x50)2+245000≤x≤150,

時,增大而增大,

時,增大而減小

∴當最小, 此時y=22500,x+300=450,

∴應該訂制450平方米的海報.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線與拋物線相交于A,B兩點,且點A1,-4)為拋物線的頂點,點Bx軸上。

1)求拋物線的解析式;

2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;

3)若點Qy軸上一點,且△ABQ為直角三角形,求點Q的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yaxm12+2m(其中m0)與其對稱軸l相交于點P.與y軸相交于點A0,m)連接并延長PAPO,與x軸、拋物線分別相交于點B、C,連接BC將△PBC繞點P逆時針旋轉,使點C落在拋物線上,設點CB的對應點分別是點B′和C′.

1)當m1時,該拋物線的解析式為:   

2)求證:∠BCA=∠CAO;

3)試問:BB′+BCBC′是否存在最小值?若存在,求此時實數(shù)m的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca、bc為常數(shù),且a≠0)的圖象如圖所示,給出下列結論:①b24ac abc0;③ab; b+c3a;⑤方程ax2+bx+c0的兩根之和的一半大于﹣1.其中,正確的結論有(  )

A. ①②③⑤B. .①②④⑤C. ①②④D. .①②③④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市實施產業(yè)精準扶貧,幫助貧困戶承包荒山種植某品種蜜柚.已知該蜜柚的成本價為6/千克,到了收獲季節(jié)投入市場銷售時,調查市場行情后,發(fā)現(xiàn)該蜜柚不會虧本,且每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關系如圖所示.

1)求yx的函數(shù)關系式,并寫出x的取值范圍;

2)當該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?

3)某村農戶今年共采摘蜜柚12000千克,若該品種蜜柚的保質期為50天,按照(2)的銷售方式,能否在保質期內全部銷售完這批蜜柚?若能,請說明理由;若不能,應定銷售價為多少元時,既能銷售完又能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線yx2+bx+c經過點A、B、C,已知A(﹣1,0),C0,﹣3).

1)求拋物線的解析式;

2)如圖1,拋物線頂點為EEFx軸于F點,Mm,0)是x軸上一動點,N是線段EF上一點,若∠MNC90°,請指出實數(shù)m的變化范圍,并說明理由.

3)如圖2,將拋物線平移,使其頂點E與原點O重合,直線ykx+2k0)與拋物線相交于點P、Q(點P在左邊),過點Px軸平行線交拋物線于點H,當k發(fā)生改變時,請說明直線QH過定點,并求定點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)學興趣小組活動中,小明進行數(shù)學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖1位置放置,ADAE在同一直線上,ABAG在同一直線上.

1)小明發(fā)現(xiàn)DGBE,請你幫他說明理由.

2)如圖2,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時BE的長.

3)如圖3,小明將正方形ABCD繞點A繼續(xù)逆時針旋轉,線段DG與線段BE將相交,交點為H,寫出GHEBHD面積之和的最大值,并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我區(qū)某中學開展社會主義核心價值觀演講比賽活動,九(1)、九(2)班根據初賽成績各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100分)如圖所示.根據圖中數(shù)據解決下列問題:

(1)九(1)班復賽成績的中位數(shù)是   分,九(2)班復賽成績的眾數(shù)是   分;

(2)小明同學已經算出了九(1)班復賽的平均成績 =85分;方差S2= [(85﹣85)2+(75﹣85)2+(80﹣85)2+(85﹣85)2+(100﹣85)2]=70(分2),請你求出九(2)班復賽的平均成績x2和方差S22

(3)根據(2)中計算結果,分析哪個班級的復賽成績較好?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對稱軸為直線x=﹣1的拋物線yx2+bx+cx軸相交于A、B兩點,其中點A的坐標為(﹣30).

1)求點B的坐標;

2)求二次函數(shù)的解析式;

3)已知C為拋物線與y軸的交點,設點Q是線段AC上的動點,作QDx軸交拋物線于點D,求線段QD長度的最大值.

查看答案和解析>>

同步練習冊答案