【題目】如圖,拋物線的圖像過點(diǎn),頂點(diǎn)為

的值.

點(diǎn)以點(diǎn)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)得到點(diǎn),判斷點(diǎn)是否落在拋物線上.

第一象限內(nèi)拋物線上有一點(diǎn)相交于點(diǎn),當(dāng)時(shí),求點(diǎn)坐標(biāo).

【答案】1;=32沒有落在拋物線上;(3

【解析】

1)由點(diǎn)、在拋物線的圖像上,則滿足函數(shù)關(guān)系式,代入計(jì)算即可求得答案;

(2)由(1)可得,再確定頂點(diǎn),然后根據(jù)旋轉(zhuǎn)的性質(zhì)求得,最后將其代入函數(shù)關(guān)系式通過計(jì)算即可判斷結(jié)論;

3)通過添加輔助線根據(jù)相似三角形的判定和性質(zhì)可得,由待定系數(shù)法求得直線,再將坐標(biāo)代入解析式得到關(guān)于的方程,解方程確定的取值即可求得答案.

解:(1)由拋物線與軸交于點(diǎn)03),

可得 =3,把-1,0)代入

,解得

2)如圖:

由(1)可得

∴頂點(diǎn)為

,

,把代入

沒有落在拋物線

3)過點(diǎn)、分別作、,如圖:

、

∴設(shè)點(diǎn)

∵直線過點(diǎn),

∴直線

∵點(diǎn)在直線

∴將代入

解得:2

∴所求點(diǎn)的坐標(biāo)為

故答案是:(1;=32沒有落在拋物線上;(3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=6BC=12,點(diǎn)D在邊BC上,點(diǎn)E在線段AD上,EFAC于點(diǎn)F,EGEFAB于點(diǎn)G,若EF=EG,則CD的長為( )

A.3.6B.4C.4.8D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC內(nèi)接于⊙O,BC為⊙O直徑,延長ACD,過D作⊙O切線,切點(diǎn)為E,且∠D=90°,連接BE.DE=12,

(1)CD=4,求⊙O的半徑;

(2)AD+CD=30,求AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB,A23),B53),拋物線y=﹣(x12m2+2m+1x軸的兩個(gè)交點(diǎn)分別為CD(點(diǎn)C在點(diǎn)D的左側(cè))

1)求m為何值時(shí)拋物線過原點(diǎn),并求出此時(shí)拋物線的解析式及對稱軸和項(xiàng)點(diǎn)坐標(biāo).

2)設(shè)拋物線的頂點(diǎn)為Pm為何值時(shí)△PCD的面積最大,最大面積是多少.

3)將線段AB沿y軸向下平移n個(gè)單位,求當(dāng)mn有怎樣的關(guān)系時(shí),拋物線能把線段AB分成12兩部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象上一點(diǎn)Am,4),過點(diǎn)AABx軸于B,CDAB,交x軸于C,交反比例函數(shù)圖象于D,BC2,CD

1)求反比例函數(shù)的表達(dá)式;

2)若點(diǎn)Py軸上一動(dòng)點(diǎn),求PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD交于點(diǎn)O,AEBCCB延長線于E,CFAEAD延長線于點(diǎn)F

(1)求證:四邊形AECF是矩形;

(2)連接OE,若cosBAE,AB5,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)D在直線AB上,點(diǎn)D的縱坐標(biāo)為6,點(diǎn)Cx軸上且位于原點(diǎn)右側(cè),連接CD,且

如圖1,求直線CD的解析式;

如圖2,點(diǎn)P在線段AB點(diǎn)P不與點(diǎn)A,B重合,過點(diǎn)P軸,交CD于點(diǎn)Q,點(diǎn)EPQ的中點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)為t,EQ的長為d,求dt之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;

如圖3,在的條件下,以CQ為斜邊作等腰直角,且點(diǎn)M在直線CD的右側(cè),連接OEOM,當(dāng)時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在過直線AB外一點(diǎn)P作直線AB的平行線時(shí),可以按如下步驟進(jìn)行:①在直線AB上任取兩點(diǎn)CD;②分別以點(diǎn)PD為圓心,CDPC為半徑畫弧,兩弧交于點(diǎn)E;③作直線PE,則PEAB.在上面作圖過程中,PEAB的依據(jù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),AOB是等腰直角三角形,∠AOB=90°,點(diǎn)A2,1.

1)求點(diǎn)B的坐標(biāo);

2)求經(jīng)過A、OB三點(diǎn)的拋物線的函數(shù)表達(dá)式;

3)在(2)所求的拋物線上,是否存在一點(diǎn)P,使四邊形ABOP的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案