【題目】在等邊△ABC中,點(diǎn)E是AB上的動(dòng)點(diǎn),點(diǎn)E與點(diǎn)A、B不重合,點(diǎn)D在CB的延長(zhǎng)線上,且EC=ED.
(1)如圖1,當(dāng)BE=AE時(shí),求證:BD=AE;
(2)當(dāng)BE≠AE時(shí),“BD=AE”能否成立?若不成立,請(qǐng)直接寫出BD與AE數(shù)理關(guān)系,若成立,請(qǐng)給予證明.
【答案】(1)證明見解析
(2)AE=DB,理由見解析
【解析】
(1)由等邊三角形的性質(zhì)得出AE=BE,∠BCE=30°,再根據(jù)ED=EC,得出∠D=∠BCE=30°,再證出∠D=∠DEB,得出DB=BE,從而證出AE=DB;
(2)作輔助線得出等邊三角形AEF,得出AE=EF,再證明三角形全等,得出DB=EF,證出AE=DB.
(1)∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
∵AE=BE,△ABC是等邊三角形
∴∠BCE=30°,
∵ED=EC,
∴∠D=∠BCE=30°.
∵∠ABC=∠D+∠BED,
∴∠BED=30°,
∴∠D=∠BED,
∴BD=BE.
∴AE=DB.
(2)AE=DB;
理由:過點(diǎn)E作EF∥BC交AC于點(diǎn)F.如圖2所示:
∴∠AEF=∠ABC,∠AFE=∠ACB.
∵△ABC是等邊三角形,
∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,
∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,
即∠AEF=∠AFE=∠A=60°,
∴△AEF是等邊三角形.
∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°,
∵DE=EC,
∴∠D=∠ECD,
∴∠BED=∠ECF.
在△DEB和△ECF中,
∴△DEB≌△ECF(AAS),
∴DB=EF,
∴AE=BD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是邊長(zhǎng)為3的等邊三角形,點(diǎn)D是邊BC上的一點(diǎn),且BD=1,以AD為邊作等邊△ADE,過點(diǎn)E作EF∥BC,交AC于點(diǎn)F,連接BF,則下列結(jié)論中①△ABD≌△BCF;②四邊形BDEF是平行四邊形;③S四邊形BDEF=;④S△AEF=.其中正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2(m+1)x+m2+2=0
(1)若方程有實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍;
(2)若方程兩實(shí)數(shù)根分別為x1、x2 , 且滿足x12+x22=10,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是△ABC的內(nèi)心,AE的延長(zhǎng)線和△ABC的外接圓相交于點(diǎn)D,連接BD,BE,CE,若∠CBD=32°,則∠BEC的度數(shù)為( )
A.128°
B.126°
C.122°
D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E,N,P,G分別在邊AB,BC,CD,DA上,點(diǎn)M,F(xiàn),Q都在對(duì)角線BD上,且四邊形MNPQ和AEFG均為正方形,則 的值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】補(bǔ)全下列推理過程:
如圖,已知AB∥CE,∠A=∠E,試說明:∠CGD=∠FHB.
解:因?yàn)?/span>AB∥CE(已知),
所以∠A=∠ ( ).
因?yàn)椤?/span>A=∠E(已知),
所以∠ =∠ (等量代換).
所以 ∥ ( ).
所以∠CGD=∠ ( ).
因?yàn)椤?/span>FHB=∠GHE( ),
所以∠CGD=∠FHB(等量代換).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從數(shù)﹣2,﹣ ,0,4中任取一個(gè)數(shù)記為m,再從余下的三個(gè)數(shù)中,任取一個(gè)數(shù)記為n,若k=mn,則正比例函數(shù)y=kx的圖象經(jīng)過第三、第一象限的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙O的半徑為1,則直線y=﹣2x+ 與⊙O的位置關(guān)系是( )
A.相離
B.相交
C.相切
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,則CE2+CF2等于( )
A.75
B.100
C.120
D.125
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com