【題目】某校開展研學(xué)旅行活動,準(zhǔn)備去的研學(xué)基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位學(xué)生只能選去一個地方,王老師對本全體同學(xué)選取的研學(xué)基地情況進行調(diào)查統(tǒng)計,繪制了兩幅不完整的統(tǒng)計圖(如圖所示).
(1)求該班的總?cè)霐?shù),并補全條形統(tǒng)計圖.
(2)求D(泗水)所在扇形的圓心角度數(shù);
(3)該班班委4人中,1人選去曲阜,2人選去梁山,1人選去汶上,王老師要從這4人中隨機抽取2人了解他們對研學(xué)基地的看法,請你用列表或畫樹狀圖的方法,求所抽取的2人中恰好有1人選去曲阜,1人選去梁山的概率.
【答案】(1)50人,補全圖形見解析;(2)D(泗水)所在扇形的圓心角度數(shù)為100.8°;
(3).
【解析】
(1)用C組的人數(shù)除以它所占的百分比即可得到全班人數(shù),用總?cè)藬?shù)乘以B的百分比求得其人數(shù),據(jù)此可補全條形圖;
(2)用D組的所占百分比乘以360°即可得到在扇形統(tǒng)計圖中“D”對應(yīng)扇形的圓心角的度數(shù);
(3)先畫樹狀圖展示所有12種等可能的結(jié)果數(shù),找出所抽取的2人中恰好有1人選去曲阜,1人選去梁山所占結(jié)果數(shù),然后根據(jù)概率公式求解.
(1)該班的人數(shù)為=50人,
則B基地的人數(shù)為50×24%=12人,
補全圖形如下:
(2)D(泗水)所在扇形的圓心角度數(shù)為360°×=100.8°;
(3)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中所抽取的2人中恰好有1人選去曲阜,1人選去梁山的占4種,
所以所抽取的2人中恰好有1人選去曲阜,1人選去梁山的概率為=
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.在直角坐標(biāo)系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點B的坐標(biāo)為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E.那么點D的坐標(biāo)為( �。�
A. B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y = kx + b的圖象經(jīng)過點(1,-2)和(2,0).
(1)求這個一次函數(shù)的關(guān)系式:
(2)將該函數(shù)的圖象沿x軸向左平移3個單位后,求所得圖象對應(yīng)的函數(shù)表達式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.
(1)B出發(fā)時與A相距 千米.
(2)B出發(fā)后 小時與A相遇.
(3)B走了一段路后,自行車發(fā)生故障,進行 修理,所用的時間是 小時.
(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進, 小時與A相遇,相遇點離B的出發(fā)點 千米.在圖中表示出這個相遇點C.
(5)求出A行走的路程S與時間t的函數(shù)關(guān)系式.(寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE和△BC′F的周長之和為( �。�
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次研究性學(xué)習(xí)活動中,同學(xué)們看到了工人師傅在木板上畫一個直角三角形的過程(如圖所示):畫線段AB,過點A任作一條直線l,以點A為圓心,以AB長為半徑畫弧,與直線l相交于兩點C、D,連接BC和BD.則△BCD就是直角三角形.
(1)請你說明△BCD是直角三角形的道理;
(2)請利用上述方法作一個直角三角形,使其中一個銳角為60°(不寫作法,保留作圖
痕跡,在圖中注明60°的角).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(3,0),B(﹣1,0),C(0,﹣3).
(1)求該拋物線的解析式;
(2)若以點A為圓心的圓與直線BC相切于點M,求切點M的坐標(biāo);
(3)若點Q在x軸上,點P在拋物線上,是否存在以點B,C,Q,P為頂點的四邊形是平行四邊形?若存在,求點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與
,
軸分別交于點
,
,與反比例函數(shù)
圖象交于點
,
,過點
作
軸的垂線交該反比例函數(shù)圖象于點
.
求點
的坐標(biāo).
若
.
①求的值.
②試判斷點與點
是否關(guān)于原點
成中心對稱?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,A(-2,1),B(-3,4),C(-1,3),過點(l,0)作x軸的垂線.
(1)作出△ABC關(guān)于直線的軸對稱圖形△
;
(2)直接寫出A1(___,___),B1(___,___),C1(___,___);
(3)在△ABC內(nèi)有一點P(m,n),則點P關(guān)于直線的對稱點P1的坐標(biāo)為(___,___)(結(jié)果用含m,n的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com