【題目】如圖1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)試說明△ABC是等腰三角形;
(2)已知S△ABC=40cm2,如圖2,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒2cm的速度沿線段BA向點(diǎn)A 運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以每秒1cm速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止. 設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒),
①若△DMN的邊與BC平行,求t的值;
②若點(diǎn)E是邊AC的中點(diǎn),問在點(diǎn)M運(yùn)動(dòng)的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.
圖1 圖2 備用圖
【答案】(1)見詳解;(2)①t值為:s或6s;②t值為:4.5或5或.
【解析】
(1)設(shè)BD=2x,AD=3x,CD=4x,則AB=5x,由勾股定理求出AC,即可得出結(jié)論;
(2)由△ABC的面積求出BD、AD、CD、AC;①當(dāng)MN∥BC時(shí),AM=AN;當(dāng)DN∥BC時(shí),AD=AN;得出方程,解方程即可;
②根據(jù)題意得出當(dāng)點(diǎn)M在DA上,即2<t≤5時(shí),△MDE為等腰三角形,有3種可能:如果DE=DM;如果ED=EM;如果MD=ME=2t-4;分別得出方程,解方程即可.
解:(1)證明:設(shè)BD=2x,AD=3x,CD=4x,則AB=5x,
在Rt△ACD中,AC=5x,
∴AB=AC,
∴△ABC是等腰三角形;
(2)解:由(1)知,AB=5x,CD=4x,
∴S△ABC=×5x×4x=40cm2,而x>0,
∴x=2cm,
則BD=4cm,AD=6cm,CD=8cm,AB=AC=10cm.
由運(yùn)動(dòng)知,AM=10-2t,AN=t,
①當(dāng)MN∥BC時(shí),AM=AN,
即10-2t=t,
∴;
當(dāng)DN∥BC時(shí),AD=AN,
∴6=t,
得:t=6;
∴若△DMN的邊與BC平行時(shí),t值為s或6s.
②存在,理由:
Ⅰ、當(dāng)點(diǎn)M在BD上,即0≤t<2時(shí),△MDE為鈍角三角形,但DM≠DE;
Ⅱ、當(dāng)t=2時(shí),點(diǎn)M運(yùn)動(dòng)到點(diǎn)D,不構(gòu)成三角形
Ⅲ、當(dāng)點(diǎn)M在DA上,即2<t≤5時(shí),△MDE為等腰三角形,有3種可能.
∵點(diǎn)E是邊AC的中點(diǎn),
∴DE=AC=5
當(dāng)DE=DM,則2t-4=5,
∴t=4.5s;
當(dāng)ED=EM,則點(diǎn)M運(yùn)動(dòng)到點(diǎn)A,
∴t=5s;
當(dāng)MD=ME=2t-4,
如圖,過點(diǎn)E作EF垂直AB于F,
∵ED=EA,
∴DF=AF=AD=3,
在Rt△AEF中,EF=4;
∵BM=2t,BF=BD+DF=4+3=7,
∴FM=2t-7
在Rt△EFM中,(2t-4)2-(2t-7)2=42,
∴t=.
綜上所述,符合要求的t值為4.5或5或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八(1)班數(shù)學(xué)老師將本班某次參加的數(shù)學(xué)競賽成績(得分取整數(shù),滿分100分)進(jìn)行整理統(tǒng)計(jì)后,制成如下的頻數(shù)直方圖和扇形統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)在分?jǐn)?shù)段70.5~80.5分的頻數(shù)、頻率分別是多少?
(2)m、n、的值分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根為、,則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB﹣BC向終點(diǎn)C運(yùn)動(dòng),在AB上以每秒8個(gè)單位長度的速度運(yùn)動(dòng),在BC上以每秒2個(gè)單位長度的速度運(yùn)動(dòng),點(diǎn)Q從點(diǎn)C出發(fā),沿CA方向以每秒個(gè)單位長度的速度運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P停止時(shí),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)求線段AQ的長;(用含t的代數(shù)式表示)
(2)當(dāng)點(diǎn)P在AB邊上運(yùn)動(dòng)時(shí),求PQ與△ABC的一邊垂直時(shí)t的值;
(3)設(shè)△APQ的面積為S,求S與t的函數(shù)關(guān)系式;
(4)當(dāng)△APQ是以PQ為腰的等腰三角形時(shí),直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖,給出下列四個(gè)結(jié)論:①;②;③,④;其中正確結(jié)論是( )
A. ①②③ B. ①③④ C. ②③④ D. ①②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,P是AB上的動(dòng)點(diǎn)(P異于A、B),過點(diǎn)P的直線截△ABC,使截得的三角形與△ABC相似,我們不妨稱這種直線為過點(diǎn)P的△ABC的相似線,簡記為P(),(為自然數(shù))
(1)如圖①,∠A=90°,∠B=∠C,當(dāng)BP=2PA時(shí),P()、P()都是過點(diǎn)P的△ABC的相似線(其中⊥BC,∥AC),此外還有_______條.
(2)如圖②,∠C=90°,∠B=30°,當(dāng)_____時(shí),P()截得的三角形面積為△ABC面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC>AC,點(diǎn)D在BC上,且DC=AC,∠ACB的平分線CF交AD于點(diǎn)F,點(diǎn)E是AB的中點(diǎn),連結(jié)EF.
(1)求證:EF∥BC;
(2)若四邊形BDFE的面積為3,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點(diǎn)D,連接CD并延長交AB的延長線于點(diǎn)F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=4,求圖中陰影部分的面積(結(jié)果保留根號和π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com