【題目】八(1)班數(shù)學老師將本班某次參加的數(shù)學競賽成績(得分取整數(shù),滿分100分)進行整理統(tǒng)計后,制成如下的頻數(shù)直方圖和扇形統(tǒng)計圖,請根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)在分數(shù)段70.5~80.5分的頻數(shù)、頻率分別是多少?
(2)m、n、的值分別是多少?
【答案】(1)在分數(shù)段70.5~80.5分的頻數(shù)是18,頻率是36%.(2)m=8,n=12,=72°.
【解析】
(1)根據(jù)直方圖和扇形統(tǒng)計圖直接得出即可;
(2)用(1)題中在分數(shù)段70.5~80.5分的頻數(shù)÷頻率可得總?cè)藬?shù),然后用在分數(shù)段50.5~60.5分的人數(shù)÷總?cè)藬?shù)即可求出m,用1減去其余4個組的頻率即得n的值,然后用360°×20%即得的度數(shù).
解:(1)由頻數(shù)分布直方圖可得:在分數(shù)段70.5~80.5分的頻數(shù)為18,由扇形統(tǒng)計圖可得:在分數(shù)段70.5~80.5分的頻率是36%;
(2)18÷36%=50,在分數(shù)段50.5~60.5分的頻率是:4÷50=8%,所以m=8,
在90.5~100.5分的頻率:1-36%-24%-8%-20%=12%,所以n=12,
360°×20%=72°,所以=72°.
科目:初中數(shù)學 來源: 題型:
【題目】密碼鎖有三個轉(zhuǎn)輪,每個轉(zhuǎn)輪上有十個數(shù)字:0,1,2,…9.小黃同學是9月份中旬出生,用生日“月份+日期”設(shè)置密碼:9××
小張同學要破解其密碼:
(1)第一個轉(zhuǎn)輪設(shè)置的數(shù)字是9,第二個轉(zhuǎn)輪設(shè)置的數(shù)字可能是 .
(2)請你幫小張同學列舉出所有可能的密碼,并求密碼數(shù)能被3整除的概率;
(3)小張同學是6月份出生,根據(jù)(1)(2)的規(guī)律,請你推算用小張生日設(shè)置的密碼的所有可能個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與x軸交點的橫坐標分別為x1、x2,其中﹣2<x1<﹣1,0<x2<1.下列結(jié)論:
①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.
其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)
根據(jù)所給信息,解答以下問題:
(1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是 度;
(2)補全條形統(tǒng)計圖;
(3)所抽取學生的足球運球測試成績的中位數(shù)會落在 等級;
(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點C(0,3),與x軸分別交于點A,點B(3,0).點P是直線BC上方的拋物線上一動點.
(1)求二次函數(shù)y=ax2+2x+c的表達式;
(2)連接PO,PC,并把△POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時點P的坐標;
(3)當點P運動到什么位置時,四邊形ACPB的面積最大?求出此時P點的坐標和四邊形ACPB的最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計劃建一個長方形養(yǎng)雞場,為了節(jié)省材料,利用一道足夠長的墻做為養(yǎng)雞場的一邊,另三邊用鐵絲網(wǎng)圍成,如果鐵絲網(wǎng)的長為35m.
(1)計劃建養(yǎng)雞場面積為150m2,則養(yǎng)雞場的長和寬各為多少?
(2)能否建成的養(yǎng)雞場面積為160m2?如果能,請算出養(yǎng)雞場的長和寬;如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的外角∠ACD的平分線CP與∠ABC平分線BP交于點P,若∠BPC=40°,則∠CAP的度數(shù)是( )
A. 30°; B. 40°; C. 50°; D. 60°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,CD⊥AB于D,且BD : AD : CD=2 : 3 : 4,
(1)試說明△ABC是等腰三角形;
(2)已知S△ABC=40cm2,如圖2,動點M從點B出發(fā)以每秒2cm的速度沿線段BA向點A 運動,同時動點N從點A出發(fā)以每秒1cm速度沿線段AC向點C運動,當其中一點到達終點時整個運動都停止. 設(shè)點M運動的時間為t(秒),
①若△DMN的邊與BC平行,求t的值;
②若點E是邊AC的中點,問在點M運動的過程中,△MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.
圖1 圖2 備用圖
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com