【題目】已知:如圖,線段AB和射線BM交于點B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點C,使AC=AB;
②作∠ABM 的角平分線交AC于D點;
③在射線CM上作一點E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關(guān)系,并證明之.
【答案】(1)畫圖見解析;(2)證明見解析.
【解析】試題分析:(1)①以點A為圓心,AB的長為半徑畫圓弧交射線BM與點C,連接AC;②以點B位圓心畫一段圓弧分別交AB、BC于兩點,然后分別以這兩個點位圓心,畫兩段半徑相等的圓弧并交于一點,連接此點與B點并延長交AC于點D;③以點C位圓心,CD的長為半徑畫圓弧交射線CM于點E,連接DE;(2)猜想BD=DE,要證明DE=BD,即要證明∠1=∠3,有題目已知條件不難得出∠1=∠4,∠3=∠4,即可證明.
試題解析:
(1)如圖所示:
(2)BD= DE.
證明:∵BD平分∠ABC ,
∴∠1=∠ABC ,
∵ AB = AC ,
∴∠ABC=∠4,
∴∠1=∠4,
∵CE=CD ,
∴∠2=∠3,
∵∠4=∠2+∠3,
∴∠3=∠4,
∴∠1=∠3,
∴BD= DE .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【回顧】
如圖1,△ABC中,∠B=30°,AB=3,BC=4,則△ABC的面積等于 .
【探究】
圖2是同學(xué)們熟悉的一副三角尺,一個含有30°的角,較短的直角邊長為a;另一個含有45°的角,直角邊長為b,小明用兩副這樣的三角尺拼成一個平行四邊形ABCD(如圖3),用了兩種不同的方法計算它的面積,從而推出sin75°=,小麗用兩副這樣的三角尺拼成了一個矩形EFGH(如圖4),也推出sin75°=,請你寫出小明或小麗推出sin75°=的具體說理過程.
【應(yīng)用】
在四邊形ABCD中,AD∥BC,∠D=75°,BC=6,CD=5,AD=10(如圖5).
(1)點E在AD上,設(shè)t=BE+CE,求t2的最小值;
(2)點F在AB上,將△BCF沿CF翻折,點B落在AD上的點G處,點G是AD的中點嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OF是∠MON的平分線,點A在射線OM上,P,Q是直線ON上的兩動點,點Q在點P的右側(cè),且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點B、點C,連接AB、PB.
(1)如圖1,當(dāng)P、Q兩點都在射線ON上時,請直接寫出線段AB與PB的數(shù)量關(guān)系;
(2)如圖2,當(dāng)P、Q兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數(shù)量關(guān)系?若存在,請寫出證明過程;若不存在,請說明理由;
(3)如圖3,∠MON=60°,連接AP,設(shè)=k,當(dāng)P和Q兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點C為線段BD上的點,分別以BC,CD為邊作等邊三角形ABC和等邊三角形ECD,連接BE交AC于點M,連接AD交CE于點N,連接MN.試說明:(1);(2)為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為幫助災(zāi)區(qū)人民重建家園,某校學(xué)生積極捐款.已知第一次捐款總額為9000元,第二次捐款總額為12000元,兩次人均捐款額相等,但第二次捐款人數(shù)比第一次多50人.求該校第二次捐款的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場今年2月份的營業(yè)額為400萬元,3月份的營業(yè)額比2月份增加10%,5月份的營業(yè)額達(dá)到633.6萬元.求3月份到5月份營業(yè)額的月平均增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB、CD相交于點O,OE平分∠BOD,OF⊥CD,垂足為O.
(1)若∠EOF=54°,求∠AOC的度數(shù);
(2)①在∠AOD的內(nèi)部作射線OG⊥OE;
②試探索∠AOG與∠EOF之間有怎樣的關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB=72°,CD平分∠ACB,則∠ADC=______.圖中有______個等腰三角形,它們是:_________________________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com