【題目】如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點(diǎn)E,DH⊥AE于點(diǎn)H,連接BH并延長(zhǎng)交CD于點(diǎn)F,連接DE交BF于點(diǎn)O,下列結(jié)論:①∠AED=∠CED;②OE=OD;③BH=HF;④BCCF=2HE.其中正確的結(jié)論有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】D
【解析】
①根據(jù)角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AE=AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BE=DH,再根據(jù)等腰三角形兩底角相等求出∠ADE=∠AED=67.5°,根據(jù)平角等于180°求出∠CED=67.5°,從而判斷出①正確;
②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根據(jù)等角對(duì)等邊可得OE=OD=OH,判斷出②正確;
③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BH=HF,判斷出③正確;
④根據(jù)全等三角形對(duì)應(yīng)邊相等可得DF=HE,然后根據(jù)HE=AE-AH=BC-CD,BC-CF=BC-(CD-DF)=2HE,判斷出④正確.
解:∵在矩形ABCD中,AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,
∵AD=AB,
∴AE=AD,
在△ABE和△AHD中,
,
∴△ABE≌△AHD(AAS),
∴BE=DH,
∴AB=BE=AH=HD,
∴∠ADE=∠AED=(180°-45°)=67.5°,
∴∠CED=180°-45°-67.5°=67.5°,
∴∠AED=∠CED,故①正確;
∵AB=AH,
∵∠AHB=(180°-45°)=67.5°,∠OHE=∠AHB(對(duì)頂角相等),
∴∠OHE=67.5°=∠AED,
∴OE=OH,
∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,
∴∠DHO=∠ODH,
∴OH=OD,
∴OE=OD=OH,故②正確;
∵∠EBH=90°-67.5°=22.5°,
∴∠EBH=∠OHD,
在△BEH和△HDF中,
,
∴△BEH≌△HDF(ASA),
∴BH=HF,HE=DF,故③正確;
∵HE=AE-AH=BC-CD,
∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正確;
綜上所述,結(jié)論正確的是①②③④共4個(gè).
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著國內(nèi)疫情基本得到控制,旅游業(yè)也慢慢復(fù)蘇,經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn)旅游景點(diǎn)未來天內(nèi),旅游人數(shù)與時(shí)間的關(guān)系如下表;每張門票與時(shí)間之間存在如下圖所示的一次函數(shù)關(guān)系.(,且為整數(shù))
時(shí)間(天) | |||||
人數(shù)(人) |
請(qǐng)結(jié)合上述信息解決下列問題:
(1)直接寫出:關(guān)于的函數(shù)關(guān)系式是 .與時(shí)間函數(shù)關(guān)系式是 .
(2)請(qǐng)預(yù)測(cè)未來天中哪一天的門票收入最多,最多是多少?
(3)為支援武漢抗疫,該旅游景點(diǎn)決定從每天獲得的門票收入中拿出元捐贈(zèng)給武漢紅十字會(huì),求捐款后共有幾天每天剩余門票收入不低于元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,BE是⊙O的弦,BC是∠ABE的平分線且交⊙O于點(diǎn)C,連接AC,CE,過點(diǎn)C作CD⊥BE,交BE的延長(zhǎng)線于點(diǎn)D.
(1)∠DCE ∠CBE;(填“>”“<”或“=”)
(2)求證:DC是⊙O的切線;
(3)若⊙O的直徑為10,sin∠BAC=,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)山峰的高度每增加1百米,氣溫大約降低0.6℃.氣溫T(℃)和高度h(百米)的函數(shù)關(guān)系如圖所示.請(qǐng)根據(jù)圖象解決下列問題:
(1)求高度為5百米時(shí)的氣溫.
(2)求T關(guān)于h的函數(shù)表達(dá)式.
(3)測(cè)得山頂?shù)臍鉁貫?/span>6℃,求該山峰的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠接受了20天內(nèi)生產(chǎn)1200臺(tái)AB型電子產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)AB型產(chǎn)品由4個(gè)A型裝置和3個(gè)B型裝置配套組成.工廠現(xiàn)有80名工人,每個(gè)工人每天能加工6個(gè)A型裝置或3個(gè)B型裝置.工廠將所有工人分成兩組同時(shí)開始加工,每組分別加工一種裝置,并要求每天加工的A、B型裝置數(shù)量正好全部配套組成AB型產(chǎn)品.為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠決定補(bǔ)充一些新工人,這些新工人只能獨(dú)立進(jìn)行A型裝置的加工,且每人每天只能加工4個(gè)A型裝置.
(1)設(shè)原來每天安排x名工人生產(chǎn)A型裝置,后來補(bǔ)充m名新工人,求x的值(用含m的代數(shù)式表示)
(2)請(qǐng)問至少需要補(bǔ)充多少名新工人才能在規(guī)定期內(nèi)完成總?cè)蝿?wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過點(diǎn)A(,2),且與直線交于B、C兩點(diǎn),點(diǎn)B的坐標(biāo)為(,m).
(1)求拋物線的解析式;
(2)點(diǎn)D為拋物線上位于直線BC上方的一點(diǎn),過點(diǎn)D作DE⊥x軸交直線BC于點(diǎn)E,點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)線段DE的長(zhǎng)度最大時(shí),求PD+PA的最小值;
(3)設(shè)點(diǎn)M為拋物線的頂點(diǎn),在y軸上是否存在點(diǎn)Q,使得∠AQM=45°?若存在,求點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一項(xiàng)工程,由甲、乙兩個(gè)工程隊(duì)共同完成,若乙工程隊(duì)單獨(dú)完成需要60天;若兩個(gè)工程隊(duì)合作18天后,甲工程隊(duì)再單獨(dú)做10天也恰好完成.
(1)甲工程隊(duì)單獨(dú)完成此項(xiàng)工程需要幾天?
(2)若甲工程隊(duì)每天施工費(fèi)用為0.6萬元,乙工程隊(duì)每天施工費(fèi)用為0.35萬元,要使該項(xiàng)目總施工費(fèi)用不超過22萬元,則乙工程隊(duì)至少施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線經(jīng)過A(-3,0),B(1,0),C(0,-3)三點(diǎn),其頂點(diǎn)為D,對(duì)稱軸是直線,與x軸交于點(diǎn)H.
(1)求該拋物線的解析式;
(2)若點(diǎn)P是該拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),求△PBC周長(zhǎng)的最小值;
(3)如圖2,若E是線段AD上的一個(gè)動(dòng)點(diǎn)(E與A、D不重合),過E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,△ADF的面積為S.
①試求S與m的函數(shù)關(guān)系式;
②S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系中的點(diǎn)P和圖形M,給出如下定義:Q為圖形M上任意一點(diǎn),如果兩點(diǎn)間的距離有最大值,那么稱這個(gè)最大值為點(diǎn)P與圖形M間的開距離,記作.已知直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,的半徑為1.
(1)若,
①求的值;
②若點(diǎn)C在直線上,求的最小值;
(2)以點(diǎn)A為中心,將線段順時(shí)針旋轉(zhuǎn)得到,點(diǎn)E在線段組成的圖形上,若對(duì)于任意點(diǎn)E,總有,直接寫出b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com