【題目】如圖:在四邊形紙片ABCD中,AB12,CD2,ADBC6,∠A=∠B.現(xiàn)將紙片沿EF折疊,使點A的對應(yīng)點A'落在AB邊上,連接A'C.若△A'BC恰好是以A'C為腰的等腰三角形,則AE的長為_____

【答案】1或.

【解析】

過點CCMAB于點M,過點DDNAB于點N,由“AAS”可證△ADN≌△BCM,可得ANBMDNCM,即可證四邊形DCMN是矩形,可得CDMN2,ANBM5,由折疊性質(zhì)可得AEA'E,分A'CBCA'CA'B兩種情況討論,由等腰三角形的性質(zhì)和勾股定理可求解.

解:如圖,過點CCMAB于點M,過點DDNAB于點N,

四邊形DCMN是矩形

ANBM5

∵將紙片沿EF折疊,使點A的對應(yīng)點A'落在AB邊上,

AEA'E,

A'CBC,且CMAB

BMA'M5

AA'ABA'B12102

AE1

A'CA'B,過點A'A'HBC,

CH2BC2BM2A'C2A'M2

3625A'B2﹣(5A'B2,

A'B

AA'ABA'B12

AE

故答案為:1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=BC,點OAC的中點,點PAC上的一個動點(點P不與點A,O,C重合).過點A,點C作直線BP的垂線,垂足分別為點E和點F,連接OE,OF.

(1)如圖1,請直接寫出線段OEOF的數(shù)量關(guān)系;

(2)如圖2,當(dāng)∠ABC=90°時,請判斷線段OEOF之間的數(shù)量關(guān)系和位置關(guān)系,并說明理由

(3)若|CF﹣AE|=2,EF=2,當(dāng)POF為等腰三角形時,請直接寫出線段OP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,EBC的中點,以AC為直徑的⊙OAB邊交于點D,連接DE

(1)求證:DE⊙O的切線;

(2)CD6cmDE5cm,求⊙O直徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點ECD的中點,點FBC上,且CF=2BF,連接AEAF,若AF=,AE=7,tanEAF=,則線段BF的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y-x+2分別交x軸、y軸于點A、B,拋物線y=﹣x2+bx+c經(jīng)過點AB.點Px軸上一個動點,過點P作垂直于x軸的直線分別交拋物線和直線AB于點E和點F.設(shè)點P的橫坐標(biāo)為m

1)點A的坐標(biāo)為   

2)求這條拋物線所對應(yīng)的函數(shù)表達(dá)式.

3)點P在線段OA上時,若以B、EF為頂點的三角形與△FPA相似,求m的值.

4)若E、F、P三個點中恰有一點是其它兩點所連線段的中點(三點重合除外),稱E、F、P三點為“共諧點”.直接寫出E、F、P三點成為“共諧點”時m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,體育分?jǐn)?shù)在中招考試中占分比重越來越大,不少家長、考生也越來越重視;某中學(xué)計劃購買一批足球、跳繩供學(xué)生們考前日常練習(xí)使用,負(fù)責(zé)此次采購的老師從商場了解到:購買7個足球和4條跳繩共需510元;購買3個足球比購買5條跳繩少50元.

1)求足球和跳繩的單價;

2)按學(xué)校規(guī)劃,準(zhǔn)備購買足球和跳繩共200件,且足球的數(shù)量不少于跳繩的數(shù)量的 ,請設(shè)計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為參加運動會,某市射擊隊組織甲、乙、丙三名運動員進(jìn)行射擊測試,每人射擊10次,其測試成績?nèi)绫恚?/span>

甲的測試成績表

序號

1

2

3

4

5

6

7

8

9

10

成績(環(huán))

8

6

8

7

8

8

9

9

9

8

請根據(jù)以上圖表解決下列問題:

1)乙運動員測試成績的眾數(shù)是   環(huán);丙運動員測試成績的中位數(shù)是   環(huán);

2)若從三人中選拔一名成績最穩(wěn)定的運動員參加本次運動會,你認(rèn)為選誰更合適?請通過計算明.(參考數(shù)據(jù):已知S21.8,S21.4

3)若準(zhǔn)備從甲、乙、丙三人中任意選取兩人組合參加團(tuán)體比賽,由于三人的平均成績相同,因此三人都符合條件,為了保證公平競爭,現(xiàn)采取抽簽的方式產(chǎn)生,請用畫樹狀圖或列表格的方法求出選中甲、乙組合的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的邊OA,OC分別在x軸、y軸上,點B的坐標(biāo)為( ,5),△ACD與△ACO關(guān)于直線AC對稱(點DO對應(yīng)),反比例函數(shù)y k0)的圖象與ABBC分別交于EF兩點,連結(jié)DE,若DEx軸,則點F的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(m,2)B(3,n)兩點關(guān)于原點O對稱,反比例函數(shù)y的圖象經(jīng)過點A

(1)求反比例函數(shù)的解析式并判斷點B是否在這個反比例函數(shù)的圖象上;

(2)P(x1,y1)也在這個反比例函數(shù)的圖象上,﹣3x1mx10,請直接寫出y1的范圍.

查看答案和解析>>

同步練習(xí)冊答案